您现在的位置是: 首页 > 教育资讯 教育资讯

2017数学高考全国一卷真题,2017数学高考2

tamoadmin 2024-07-29 人已围观

简介1.2017年参加高考的历届生的高考时间是什么时候?2.2017年高考数学必考等差数列公式3.2017年江苏高考总分及各科分数 分值是多少4.2017年全国2卷历史难度陕西省2017高考用的是全国二卷:全国甲卷,即新课标Ⅱ卷,自2018年起使用省区有:重庆、陕西、甘肃、宁夏、青海、新疆、黑龙江、吉林、辽宁、内蒙古;全国二卷是运用通行方案“3+x”,具体考试时间为:6月7日:09:00—11:30

1.2017年参加高考的历届生的高考时间是什么时候?

2.2017年高考数学必考等差数列公式

3.2017年江苏高考总分及各科分数 分值是多少

4.2017年全国2卷历史难度

2017数学高考全国一卷真题,2017数学高考2

陕西省2017高考用的是全国二卷:全国甲卷,即新课标Ⅱ卷,自2018年起使用省区有:重庆、陕西、甘肃、宁夏、青海、新疆、黑龙江、吉林、辽宁、内蒙古;

全国二卷是运用通行方案“3+x”,具体考试时间为:

6月7日:

09:00—11:30 语文

15:00—17:00 数学?

6月8日:

09:00—11:30 综合?

15:00—17:00 外语

扩展资料:

高考通行方案“3+x”详解:

1、“3”指“语文、数学、外语”,“X”指由学生根据自己的意愿,自主从文科综合,即文综,包括思想政治、历史、地理和理科综合,即理综,包括物理、化学、生物这2个综合科目中选择一个作为考试科目;

该方案是到2019年全国应用最广,最成熟的高考方案;

其中各科分数相加总分为750分,其中语文150分,数学150分,外语150分,文理综合皆为300分。

2、“3+x”方案于1999年由广东省率先进行试点,并取得了初步成功;有关领导指出,广东的改革探索了路子,积累了经验,只要在此基础上深化改进,这个方案定会成为一个好的科目设置方案;

这项改革取稳步推进的做法,将有山西、吉林、江苏、浙江4省试行“3+x”高考科目,2001年将在北京等10多个省市扩大试行,至2002年在全国全面实施。 “3+x”方案设置的原则是有助于高等学校选拔人才,有助于中学实施素质教育,有助于高校扩大办学自主权;

方案的基本内容是,“3”指语文、数学、外语必考科目,“x”指高校根据专业的要求从中学的物理、化学、生物、政治、历史、地理6个科目或综合科目中确定一门或几门考试科目。其中的综合科目是指在中学文化科目基础上的综合能力测试;

目前,可分文科综合和理科综合或不分文理的大综合。所谓综合测试,不是对各科目按比例的“拼盘式”考查,而是一种着重应用和能力的测试。

百度百科-高考试题全国卷

百度百科-普通高等学校招生全国统一考试

2017年参加高考的历届生的高考时间是什么时候?

 平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。以下是我为您整理的关于2017年高考数学平面向量必考知识点的相关资料,希望对您有所帮助。

 高考数学必考知识点平面向量概念:

 (1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。

 (2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。

 (3)单位向量:模为1个单位长度的向量

 (4)平行向量:方向相同或相反的非零向量

 (5)相等向量:长度相等且方向相同的向量

 高考数学必考知识点平面向量数量积解析

 1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cos?(?是a与b的夹角)叫做a与b的数量积或内积,记作a?b。零向量与任意向量的数量积为0。数量积a?b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos?的乘积。

 两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a?b=x1?x2+y1?y2

 2、平面向量数量积具有以下性质:

 1、a?a=|a|2?0

 2、a?b=b?a

 3、k(a?b)=(ka)b=a(kb)

 4、a?(b+c)=a?b+a?c

 5、a?b=0<=>a?b

 6、a=kb<=>a//b

 7、e1?e2=|e1||e2|cos?

 高考数学必考知识点平面向量加法解析

 已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

 注:向量的加法满足所有的加法运算定律,如:交换律、结合律。

 高考数学必考知识点平面向量减法解析

 1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。

 -(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。

 平面向量公式汇总

 1、定点

 定点公式(向量P1P=?向量PP2)

 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 ?,使 向量P1P=?向量PP2,?叫做点P分有向线段P1P2所成的比。

 若P1(x1,y1),P2(x2,y2),P(x,y),则有

 OP=(OP1+?OP2)(1+?);(定点向量公式)

 x=(x1+?x2)/(1+?),

 y=(y1+?y2)/(1+?)。(定点坐标公式)

 我们把上面的式子叫做有向线段P1P2的定点公式

 2、三点共线定理

 若OC=?OA +?OB ,且?+?=1 ,则A、B、C三点共线

 三角形重心判断式

 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

 [编辑本段]向量共线的重要条件

 若b?0,则a//b的重要条件是存在唯一实数?,使a=?b。

 a//b的重要条件是 xy'-x'y=0。

 零向量0平行于任何向量。

 [编辑本段]向量垂直的充要条件

 a?b的充要条件是 a?b=0。

 a?b的充要条件是 xx'+yy'=0。

 零向量0垂直于任何向量.

 设a=(x,y),b=(x',y')。

 3、向量的加法

 向量的加法满足平行四边形法则和三角形法则。

 AB+BC=AC。

 a+b=(x+x',y+y')。

 a+0=0+a=a。

 向量加法的运算律:

 交换律:a+b=b+a;

 结合律:(a+b)+c=a+(b+c)。

 4、向量的减法

 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

 AB-AC=CB. 即?共同起点,指向被减?

 a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

 5、数乘向量

 实数?和向量a的乘积是一个向量,记作?a,且∣?a∣=∣?∣?∣a∣。

 当?>0时,?a与a同方向;

 当?<0时,?a与a反方向;

 当?=0时,?a=0,方向任意。

 当a=0时,对于任意实数?,都有?a=0。

 注:按定义知,如果?a=0,那么?=0或a=0。

 实数?叫做向量a的系数,乘数向量?a的几何意义就是将表示向量a的有向线段伸长或压缩。

 当∣?∣>1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上伸长为原来的∣?∣倍;

 当∣?∣<1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上缩短为原来的∣?∣倍。

 数与向量的乘法满足下面的运算律

 结合律:(?a)?b=?(a?b)=(a?b)。

 向量对于数的分配律(第一分配律):(?+?)a=?a+?a.

 数对于向量的分配律(第二分配律):?(a+b)=?a+?b.

 数乘向量的消去律:① 如果实数?0且?a=?b,那么a=b。② 如果a?0且?a=?a,那么?=?。

 6、向量的的数量积

 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0?〈a,b〉?

 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

 向量的数量积的坐标表示:a?b=x?x'+y?y'。

 向量的数量积的运算律

 a?b=b?a(交换律);

 (?a)?b=?(a?b)(关于数乘法的结合律);

 (a+b)?c=a?c+b?c(分配律);

 向量的数量积的性质

 a?a=|a|的平方。

 a?b 〈=〉a?b=0。

 |a?b|?|a|?|b|。

 7、向量的数量积与实数运算的主要不同点

 (1)向量的数量积不满足结合律,即:(a?b)?c?a?(b?c);例如:(a?b)^2?a^2?b^2。

 (2)向量的数量积不满足消去律,即:由 a?b=a?c (a?0),推不出 b=c。

 (3)|a?b|?|a|?|b|

 (4)由 |a|=|b| ,推不出 a=b或a=-b。

 8、向量的向量积

 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a?b。若a、b不共线,则a?b的模是:∣a?b∣=|a|?|b|?sin〈a,b〉;a?b的方向是:垂直于a和b,且a、b和a?b按这个次序构成右手系。若a、b共线,则a?b=0。

 (1)向量的向量积性质:

 ∣a?b∣是以a和b为边的平行四边形面积。

 a?a=0。

 a‖b〈=〉a?b=0。

 (2)向量的向量积运算律

 a?b=-b?a;

 (?a)?b=?(a?b)=a?(?b);

 (a+b)?c=a?c+b?c.

 注:向量没有除法,?向量AB/向量CD?是没有意义的。

 (3)向量的三角形不等式

 ∣∣a∣-∣b∣∣?∣a+b∣?∣a∣+∣b∣;

 ① 当且仅当a、b反向时,左边取等号;

 ② 当且仅当a、b同向时,右边取等号。

 ∣∣a∣-∣b∣∣?∣a-b∣?∣a∣+∣b∣。

 ① 当且仅当a、b同向时,左边取等号;

2017年高考数学必考等差数列公式

其实不管哪年高考,以后都是统一安排在6月6日和6月8日这2天,6月6日下午学生可以提前看考场,熟悉考场周边环境,6月9日这一天部分省市是外语口试。当然,也有个别地区有例外情况,但是全国高考时间都会安排在6月7-9日,因为26个省市已经使用全国卷,如果不一天考试的话,就会泄题。

以前,全国高考是统一安排在7月份考试的,这也是时间对高考时间又疑问的原因所在。高考之所以改在6月份进行,是因为7月洪涝灾害比较多,而7月份相对来说少一些,考生考试没有那么大的影响,所以才改在6月份高考。

/iknow-pic.cdn.bcebos/b64543a98226cffcac76b5a1b6014a90f603ea41"target="_blank"title=""class="ikqb_img_alink">/iknow-pic.cdn.bcebos/b64543a98226cffcac76b5a1b6014a90f603ea41?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="s://iknow-pic.cdn.bcebos/b64543a98226cffcac76b5a1b6014a90f603ea41"/>

2017年江苏高考总分及各科分数 分值是多少

 等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。

 高中数学知识点:等差数列公式

 等差数列公式an=a1+(n-1)d

 a1为首项,an为第n项的通项公式,d为公差

 前n项和公式为:Sn=na1+n(n-1)d/2

 Sn=(a1+an)n/2

 若m+n=p+q则:存在am+an=ap+aq

 若m+n=2p则:am+an=2ap

 以上n.m.p.q均为正整数

 解析:第n项的值an=首项+(项数-1)?公差

 前n项的和Sn=首项?n+项数(项数-1)公差/2

 公差d=(an-a1)?(n-1)

 项数=(末项-首项)?公差+1

 数列为奇数项时,前n项的和=中间项?项数

 数列为偶数项,求首尾项相加,用它的和除以2

 等差中项公式2an+1=an+an+2其中{an}是等差数列

 通项公式:公差?项数+首项-公差

 高中数学知识点:等差数列求和公式

 若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:

 S=(a1+an)n?2

 即(首项+末项)?项数?2

 前n项和公式

 注意:n是正整数(相当于n个等差中项之和)

 等差数列前N项求和,实际就是梯形公式的妙用:

 上底为:a1首项,下底为a1+(n-1)d,高为n。

 即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。

 高中数学知识点:推理过程

 设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:

 当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。

 注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。

 求和推导

 证明:由题意得:

 Sn=a1+a2+a3+。。。+an①

 Sn=an+a(n-1)+a(n-2)+。。。+a1②

 ①+②得:

 2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)

 Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2

 Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)

 基本公式

 公式 Sn=(a1+an)n/2

 等差数列求和公式

 Sn=na1+n(n-1)d/2; (d为公差)

 Sn=An2+Bn; A=d/2,B=a1-(d/2)

 和为 Sn

 首项 a1

 末项 an

 公差d

 项数n

 表示方法

 等差数列基本公式:

 末项=首项+(项数-1)?公差

 项数=(末项-首项)?公差+1

 首项=末项-(项数-1)?公差

 和=(首项+末项)?项数?2

 差:首项+项数?(项数-1)?公差?2

 说明

 末项:最后一位数

 首项:第一位数

 项数:一共有几位数

 和:求一共数的总和

 本段通项公式

 首项=2?和?项数-末项

 末项=2?和?项数-首项

 末项=首项+(项数-1)?公差:a1+(n-1)d

 项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1

 公差= d=(an-a1)/n-1

 如:1+3+5+7+?99 公差就是3-1

 将a1推广到am,则为:

 d=(an-am)/n-m

 基本性质

 若 m、n、p、q?N

 ①若m+n=p+q,则am+an=ap+aq

 ②若m+n=2q,则am+an=2aq(等差中项)

2017年全国2卷历史难度

2017年江苏高考总分480分(语数外),其中选修两门按比例划分等级A+、A、B+、B、C、D,不计算分数。

普通高中学生根据校专业选考科目要求,结合自身特长兴趣,首先在物理、历史2门科目中选择 1门,再从思想政治、地理、化学、生物4门科目中选择1门参加考试。以文理科分开进行分数分值解释:

文科生:语文160分+40分(附加)、数学160分、英语120分、选修历史(必选)100分、选修X(自选)100分。

理科生:语文160分、数学160分+40分(附加)、英语120分、选修物理(必选)100分、选修X(自选)100分。

扩展资料

2019年4月23日,江苏省人民召开“深化普通高校考试招生制度综合改革实施方案”新闻发布会,正式发布江苏2021年高考改革方案。实行“3+1+2”、不分文理、总分750分、使用全国卷模式。

选择性考试科目思想政治、历史、地理、物理、化学、生物6门。学生根据高校的要求结合自身特长兴趣首先在物理、历史2门科目中选择1门再从思想政治、地理、化学、生物4门科目中选择2门考试成绩计入考生总分作为统一高考招生录取的依据。

参加统一高考的学生可以用统一高考的语文、数学、外语科目考试替代相应科目的合格性考试。

百度百科-普通高等学校招生全国统一考试

百度百科-江苏高考新方案

2017年文科全国二卷的考生们,你们觉得今年的考试怎么样?各科难度

120路过。

。嗯其实也算中规中举吧,数学前面一马平川过来了到了圆锥曲线直接卡住。

。后面两个大题+选修就只答上了第一个问,然后前面几何第二个问算数算错了。

整体来说得140+高分不容易,130是很容易的,本人也是属于基础型选手,相比于去年2卷感觉难了一丢丢吧(主要还是后面的大题太卡人了),现在复读了,重新回顾了一下高考卷(之前从来不学导数第二个问的因为怕浪费时间,现在复读了专心攻克一下),发现其实不是很难,只是不知道解题方法(就如导数第二个问二次求导+洛必达法则就可以轻松解决了),整体来说要比模拟考拿分容易一些(模拟考12题和16题是压轴题稍微难一些 17年二卷选择填空没有压轴题),我之前模拟考一般都是100-110左右,这就是数学吧,现在趋势感觉数学不会偏难出太多题了都是中规的多一些。文综是我弱项(尤其是地理政治,基本不咋背),高考170+,选择对的比较多,历史二卷答得比较好(没有什么难题,论述题写钟表也很好写),英语超级弱项,只考了90+,就不多评述了,现在英语整体110+,感觉还是背单词的功劳,语文也是大弱项90+,作文比较恶心立意多角度,好找但是不好写,不如任务驱动类好写 希望楼主给个好评,一字一字码出来的。

2017年高考全国二卷数学难吗?对于全国二卷地区的考生来说

LZ您好

全国卷2本来就不是难卷,且2017年的全国卷2的难度"歪了"

歪的地方是题目不算新,计算量挺大(第18题概率论与数理统计的大题,并且位置靠前,后面大题不难但是做完这题心态容易崩)

所以有一定计算量训练的学生这张卷应该很轻松

基础选择填空完全在比简单题用时。

可能拉分的题:

选择题最后一题建立坐标系进行向量计算,立刻天就蓝了。结果还是考计算量!

填空倒数第二题是裂项

填空最后一题画完图结果还是变成计算题。

三角大题是基础.

圆锥曲线和立体几何大题也是思路送分,看你认不认真计算.

压轴导数题算不得难但是(1)须有极限思想;(2)是分类讨论,存在唯一极大值点被你证明好了这题也结束了.

坐标系与参数方程选修题有积化和差的技巧。不等式的那个选修题也是套路,但是是证明题,所以难度比坐标系题要难。

所以这张卷子,真心难度不大,问做题认真不认真,计算量稍微偏大而已.

今年的高考全国二卷难度较2017年相比如何,重本线较2017年相比会

我认为难度都没多大变化,因为全国二卷都适中,题型也差不多。今年的全国二卷语文比2017年语文阅读量加大,数学则没太大变化主要以中档题为主,英语,文综,理综和2017比没多大变化。都是考虑中等学生,难度没多大改变。我认为今年的重本线应该上升,因为今年考生比2017年多,而且重本线近几年都有上升趋势。

2017海南卷与全国二卷的区别

1、2016年高考,广东、河北、河南、山西、江西、湖南、湖北、福建、安徽9省将使用 "全国卷 新课标卷 乙卷

2016年普通高考全国卷将命制甲、乙、丙三类试卷(海南卷除外,仍由国家考试中心为海南省单独命制)。

在2015年甲卷(全国II卷)、乙卷(全国I卷)的基础上,新增丙卷。

丙卷与甲卷(全国II卷)在试卷结构上相同、难度相当。

2016年,重庆和四川、广西、陕西考生将使用丙卷。其他省份还保持原来的甲卷(全国II卷)与乙卷(全国I卷)使用情况不变。

2、2016高考使用全国甲卷省份:贵州 甘肃 青海 *** 黑龙江 吉林 宁夏 内蒙古 新疆 云南 辽宁

2016年高考使用全国乙卷省份:河南 河北 山西 湖北 江西 湖南 广东 福建、安徽 、山东(英语、综合)

2018年高考增加使用全国乙卷省份:山东(语文,数学)

2016年高考使用全国丙卷省份:重庆、四川、广西、陕西。

单独命题 海南(语文、数学、英语使用全国甲卷,政治、历史、地理、化学、生物为考试中心命题。)

2018年2016年全国二卷试题难度比较(全部科目)

要看你所在的省份,把全国各省份情况列举如下北京市:所有科目全部自主命题天津市:所有科目全部自主命题上海市:所有科目全部自主命题山东省:自主命题(语、数。

PS:语文数学在2018将用新课标Ⅰ卷)+新课标Ⅰ卷(综合(2016)、英)广东省:英语听说考试由广东省自主命题(其余部分和其他科目均用新课标Ⅰ卷) 江苏省:所有科目全部自主命题浙江省:所有科目全部自主命题,英语听力使用全国英语等级考试二级听力;2017年起英语使用全国卷 ,2019年起所有科目使用全国II卷四川省:自主命题(数、英、理综)+新课标Ⅲ卷(语、文综),2017年起全部使用全国III卷福建省:2016年起全部使用全国I卷,2019年起使用全国II卷湖北省:2016年起全部使用全国I卷湖南省:2016年起全部使用全国I卷海南省:自主命题(政、史、地、理、化、生)+新课标Ⅱ卷(语、数、英)。

文章标签: # 向量 # 全国 # 高考