您现在的位置是: 首页 > 教育资讯 教育资讯
高考理数题型全归纳_高考理数试题
tamoadmin 2024-07-02 人已围观
简介1.高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.2.2011新课标高考理数21题 我的解法3.高考理数试题解疑4.2010全国1理数高考题难么2009年普通高等学校招生全国统一考试(宁夏卷)数学(理工农医类)第I卷一, 选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的。(1
1.高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.
2.2011新课标高考理数21题 我的解法
3.高考理数试题解疑
4.2010全国1理数高考题难么
2009年普通高等学校招生全国统一考试(宁夏卷)
数学(理工农医类)
第I卷
一, 选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的。
(1) 已知集合 ,则
(A) (B)
(C) (D)
(2) 复数
(A)0 (B)2 (C)-2i (D)2
(3)对变量x, y 有观测数据理力争( , )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据( , )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。
(A)变量x 与y 正相关,u 与v 正相关 (B)变量x 与y 正相关,u 与v 负相关
(C)变量x 与y 负相关,u 与v 正相关 (D)变量x 与y 负相关,u 与v 负相关
(4)双曲线 - =1的焦点到渐近线的距离为
(A) (B)2 (C) (D)1
(5)有四个关于三角函数的命题:
: x R, + = : x、y R, sin(x-y)=sinx-siny
: x , =sinx : sinx=cosy x+y=
其中假命题的是
(A) , (B) , (3) , (4) ,
(6)设x,y满足
(A)有最小值2,最大值3 (B)有最小值2,无最大值
(C)有最大值3,无最小值 (D)既无最小值,也无最大值
(7)等比数列 的前n项和为 ,且4 ,2 , 成等差数列。若 =1,则 =
(A)7 (B)8 (3)15 (4)16
(8) 如图,正方体 的棱线长为1,线段 上有两个动点E,F,且 ,则下列结论中错误的是
(A)
(B)
(C)三棱锥 的体积为定值
(D)异面直线 所成的角为定值
(9)已知O,N,P在 所在平面内,且 ,且 ,则点O,N,P依次是 的
(A)重心 外心 垂心 (B)重心 外心 内心
(C)外心 重心 垂心 (D)外心 重心 内心
(注:三角形的三条高线交于一点,此点为三角型的垂心)
(10)如果执行右边的程序框图,输入 ,那么输出的各个数的合等于
(A)3 (B) 3.5 (C) 4 (D)4.5
(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c )为
(A)48+12 (B)48+24 (C)36+12 (D)36+24
(12)用min{a,b,c}表示a,b,c三个数中的最小值
设f(x)=min{ , x+2,10-x} (x 0),则f(x)的最大值为
(A)4 (B)5 (C)6 (D)7
第II卷
二、填空题;本大题共4小题,每小题5分。
(13)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线 的方程为_____________.
(14)已知函数y=sin( x+ )( >0, - < )的图像如图所示,则 =________________
(15)7名志愿者中安排6人在周六、周日两天参加社区公益活动。若每天安排3人,则不同的安排方案共有________________种(用数字作答)。
(16)等差数列{ }前n项和为 。已知 + - =0, =38,则m=_______
三、解答题:解答应写出说明文字,证明过程或演算步骤。
(17)(本小题满分12分)
为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤。
(18)(本小题满分12分)
某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。
(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;w.w.w.k.s.5.u.c.o.m
(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.
表1:
生产能力分组
人数 4 8
5 3
表2:
生产能力分组
人数 6 y 36 18
(i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)w.w.w.k.s.5.u.c.o.m
(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)w.w.w.k.s.5.u.c.o.m
(19)(本小题满分12分)
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的 倍,P为侧棱SD上的点。
(Ⅰ)求证:AC⊥SD;w.w.w.k.s.5.u.c.o.m
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,w.w.w.k.s.5.u.c.o.m
使得BE‖平面PAC。若存在,求SE:EC的值;
若不存在,试说明理由。
(20)(本小题满分12分)
已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点, =λ,求点M的轨迹方程,并说明轨迹是什么曲线。w.w.w.k.s.5.u.c.o.m
(21)(本小题满分12分)
已知函数
(I) 如 ,求 的单调区间;
(II) 若 在 单调增加,在 单调减少,证明
<6. w.w.w.k.s.5.u.c.o.m
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。
(22)本小题满分10分)选修4-1:几何证明选讲w.w.w.k.s.5.u.c.o.m
如图,已知 的两条角平分线 和 相交于H, ,F在 上,
且 。
(I) 证明:B,D,H,E四点共圆:
(II) 证明: 平分 。w.w.w.k.s.5.u.c.o.m
(23)(本小题满分10分)选修4—4:坐标系与参数方程。
已知曲线C : (t为参数), C : ( 为参数)。
(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C 上的点P对应的参数为 ,Q为C 上的动点,求 中点 到直线
(t为参数)距离的最小值。w.w.w.k.s.5.u.c.o.m
(24)(本小题满分10分)选修4-5:不等式选讲
如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C与原点的距离,y 表示C到A距离4倍与C道B距离的6倍的和.
(1)将y表示成x的函数;
(2)要使y的值不超过70,x 应该在什么范围内取值?w.w.w.k.s.5.u.c.o.m
2009年普通高校招生全国统一考试
理数数学试题参考答案
一. 选择题
(1) A (2) D (3) C (4) A (5) A (6) B
(7) C (8) D (9) C (10) B (11) A (12) C
二.填空题
(13) (14) (15) 140 (16) 10
三.解答题
(17) 解:
方案一:①需要测量的数据有:A
点到M,N点的俯角 ;B点到M,
N的俯角 ;A,B的距离 d (如图)
所示) . ……….3分
②第一步:计算AM . 由正弦定理 ;
第二步:计算AN . 由正弦定理 ;
第三步:计算MN. 由余弦定理 .
方案二:①需要测量的数据有:
A点到M,N点的俯角 , ;B点到M,N点的府角 , ;A,B的距离 d (如图所示).
②第一步:计算BM . 由正弦定理 ;
第二步:计算BN . 由正弦定理 ;w.w.w.k.s.5.u.c.o.m
第三步:计算MN . 由余弦定理
(18) 解:
(Ⅰ)甲、乙被抽到的概率均为 ,且事件“甲工人被抽到”与事件“乙工人被抽到”相互独立,故甲、乙两工人都被抽到的概率为w.w.w.k.s.5.u.c.o.m
.
(Ⅱ)(i)由题意知A类工人中应抽查25名,B类工人中应抽查75名.
故 ,得 ,
,得 .
频率分布直方图如下
从直方图可以判断:B类工人中个体间的关异程度更小 .
(ii) ,
,
A类工人生产能力的平均数,B类工人生产能力的平均数以及全工厂工人生产能力的平均数的会计值分别为123,133.8和131.1 .
w.w.w.k.s.5.u.c.o.m
(19)解法一:
(Ⅰ)连BD,设AC交BD于O,由题意 。在正方形ABCD中, ,所以 ,得 .
(Ⅱ)设正方形边长 ,则 。
又 ,所以 ,
连 ,由(Ⅰ)知 ,所以 , w.w.w.k.s.5.u.c.o.m
且 ,所以 是二面角 的平面角。
由 ,知 ,所以 ,
即二面角 的大小为 。
(Ⅲ)在棱SC上存在一点E,使
由(Ⅱ)可得 ,故可在 上取一点 ,使 ,过 作 的平行线与 的交点即为 。连BN。在 中知 ,又由于 ,故平面 ,得 ,由于 ,故 .
解法二:
(Ⅰ);连 ,设 交于 于 ,由题意知 .以O为坐标原点, 分别为 轴、 轴、 轴正方向,建立坐标系 如图。
设底面边长为 ,则高 。
于是
w.w.w.k.s.5.u.c.o.m
故
从而
(Ⅱ)由题设知,平面 的一个法向量 ,平面 的一个法向量 ,设所求二面角为 ,则 ,所求二面角的大小为
(Ⅲ)在棱 上存在一点 使 .
由(Ⅱ)知 是平面 的一个法向量,
且
设 w.w.w.k.s.5.u.c.o.m
则
而
即当 时,
而 不在平面 内,故
(20)解:
(Ⅰ)设椭圆长半轴长及半焦距分别为 ,由已知得
,w.w.w.k.s.5.u.c.o.m
所以椭圆 的标准方程为
(Ⅱ)设 ,其中 。由已知 及点 在椭圆 上可得
。
整理得 ,其中 。
(i) 时。化简得 w.w.w.k.s.5.u.c.o.m
所以点 的轨迹方程为 ,轨迹是两条平行于 轴的线段。
(ii) 时,方程变形为 ,其中
当 时,点 的轨迹为中心在原点、实轴在 轴上的双曲线满足 的部分。
当 时,点 的轨迹为中心在原点、长轴在 轴上的椭圆满足 的部分;
当 时,点 的轨迹为中心在原点、长轴在 轴上的椭圆;
(21)解:
(Ⅰ)当 时, ,故
w.w.w.k.s.5.u.c.o.m
当
当
从而 单调减少.
(Ⅱ)
由条件得: 从而
因为 所以
将右边展开,与左边比较系数得, 故
又 由此可得
于是 w.w.w.k.s.5.u.c.o.m
(22)解:
(Ⅰ)在△ABC中,因为∠B=60°,
所以∠BAC+∠BCA=120°.
因为AD,CE是角平分线,
所以∠HAC+∠HCA=60°,
故∠AHC=120°.
于是∠EHD=∠AHC=120°.
因为∠EBD+∠EHD=180°,
所以B,D,H,E四点共圆.
(Ⅱ)连结BH,则BH为∠ABC的平分线,得∠HBD=30°
由(Ⅰ)知B,D,H,E四点共圆,
所以∠CED=∠HBD=30°.
又∠AHE=∠EBD=60°,由已知可得EF⊥AD,
可得∠CEF=30°.
所以CE平分∠DEF. w.w.w.k.s.5.u.c.o.m
(23)解:
(Ⅰ)
为圆心是( ,半径是1的圆.
为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.
(Ⅱ)当 时,
为直线
从而当 时,
(24)解:
(Ⅰ)
(Ⅱ)依题意,x满足
{
解不等式组,其解集为9,23
所以
w.w.w.k.s.5.u.c.o.m
高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.
2010年普通高等学校招生全国统一考试(安微卷)
数学(理科)
本试卷分I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。全卷满分150分,考试时间120分钟。
考生注意事项:
1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号、并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座们号是否一致,务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答案I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答案II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿约上答题无效。
4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:
如果事事件A与B互斥,那么
如果A与B是两个任意事件, ,那么
如果事件A与B相互独立,那么
第一卷(选择题共50分)
一. 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位, =
(A) — (B) + (C) + (D) —
(2)若合计A={x },则 =
(A)(— 〕 ( ,+ ) (B)( , + )
(C)(— 〕 〔 ,+ ) (D)[ , + )
(3)设向量a=(1,0),b=( , ),则下列结论中正确的是
(A)|a|=|b| (B)a b =
(C)a-b 与b垂直 (D)a//b
(4).若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=
(A)-1 (B) 1 (C) -2 (D) 2
(5).双曲线方程为x2 - 2y2=1,则它的右焦点坐标为
(A)( ,0) (B) ( ,0) (C) ( ,0) (D) ( ,0)
(6).设abc>0,二次函数f(x)=ax2+bx+c的图象可能是
(7)设曲线C的参数方程为 ( 为参数),直线l的方程为 ,则曲
线C到直线l距离为的点的个数为
(A)1 (B)2
(C)3 (D)4
(8)一个几个何体的三视图如图,该几何体的表面积为
(A)280 (B)292
(C)360 (D)372
(9)动点 在圆 上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,
已知时间 时,点 的坐标是 ,则当 时,动点 的纵坐标 关于 (单位:秒)的函数的单调递增区向是
(A)[0,1] (B)[1,7]
(C)[7,12] (D)[0,1]和[7,12]
(10)设 是任意等比数列,它的前 项和,前2 项和与前3 项和分别为 ,则下列等式中恒成立的是
(A) (B)
(C) (D)
(在此卷上答题无效)
2010年普通高等学校招生全国统一考试(安徽卷)
数 学(理科)
第Ⅱ卷(非选择题 共100分)
考生注意事项:
请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.
二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.
(11)命题“对任何 R, + >3”的否定是 .
(12)( ) 的展开式中, 的系数等于 .
(13) 设 满足约束条件 若目标函数 的最大值为8,则 的最小值为 。
(14) 如图所示,程序框图(算法流程图)的输出值 =
(15) 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以 , 和 表示由甲罐取出的球是红球,白球和黑球的事件。再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件。则下列结论中正确的是 (写出所有正确结论的编号)
①P(B)= ;
②P(B| )= ;
③事件B与事件 相互独立;
④ , , 是两两互斥的事件;
⑤P(B)的值不能确定,因为它与 , , 中究竟哪一个发生有关;
三:解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。解答时写在答题卡的指定区域内。
(16)(本小题满分12分)
设 是锐角三角形,a、b、c分别是内角A、B、C所对边长,并且 A=sin( )sin( )+ B。
(Ⅰ)求角A的值;
(Ⅱ)若 ? =12,a=2 ,求b、c(其中b<c)。
(17)(本小题满分12分)
设a为实数,函数f(x)= -2x+2a,x R.
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当a> 2-1且x>0时, > -2ax+1
(18) (本小题满分13分)
如图,在多面体ABCDEF中,四边形ABCD是正方形,EF AB,EF FB, AB=2EF,
BFC=90°,BF FC,H为BC的中点。
(Ⅰ)求证:FH 平面EDB;
(Ⅱ)求证:AC 平面EDB;
(Ⅲ)求二面角B-DE-C的大小
(19)(本小题满分13分)
已知椭圆E经过点A(2.,3),对称轴为坐标轴,焦点 在x轴上,离心率c=
(Ⅰ)求椭圆E的方程;
(Ⅱ)求∠ 的角平分线所在直线l的方程
(Ⅲ)在椭圆E上是否存在关于直线l对称的相交两点?若存在,请找出,若不存在,说明理由。
(20)(本小题满分12分)
设数列 …… 中每一项都不为0
证明, 为等差数列的充分必要条件是:对任何 ,都有
……
(21)(本小题满分13分)
品酒师需定期接受酒味鉴别功能测试,一般通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这成为一轮测试,根据一轮测试中的两次排序的偏离程度的高低为其评分.
现设n=4,分别以 表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令
则X是对两次排序的偏离程度的一种描述。
(Ⅰ)写出X的可能值集合;
(Ⅱ)假设 等可能地为1.2.3.4的各种排列,求X的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中都有X≤2,
(ⅰ)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);
(ⅱ)你认为该品酒师的酒味鉴别功能如何?说明理由。
2011新课标高考理数21题 我的解法
证明:两边同时加n得:An+n=2A(n-1)-2+2n
即An+n=2A(n-1)+2(n-1)
所以得(An+n)/[A(n-1)+(n-1)]=2
所以{An+n}是以2为首项,2为公比的等比数列
(1)an+n=2的n次幂
an=2的n次幂-n
(2)sn=2+2的2次+2的三次+...+2的n次—(1+2+3+4+....+n)
=2(2的n次-1)-1/2·n(1+n)
高考理数试题解疑
解:这题你的不能说有错。我的揭发如下。
(1)?切线方程变形为?y=(-1/2)(x-1)+1
可见斜率k=-1/2,?f(1)=1
f'(x)=[a(x+1)/x-alnx]/(x+1)^2-b/x^2
已知k=f'(1)=(2a)/4-b=-1/2即a-2b=-1?(1)
f(1)=b=1
代入(1)得a=1
(2)?当x>0时?f(x)=lnx/(x+1)+1/x
f(x)-lnx/(x+1)-k/x=(1-k)/x>0
只要1-k>0即可
所以k<1
不过,(1)?切线方程变形为?y=(-1/2)(x-1)+1
可见斜率k=-1/2,?f(1)=1
f'(x)=[a(x+1)/x-alnx]/(x+1)^2-b/x^2
已知k=f'(1)=(2a)/4-b=-1/2即a-2b=-1?(1)
f(1)=b=1
代入(1)得a=1
(2)?当x>0时?f(x)=lnx/(x+1)+1/x
f(x)-lnx/(x+1)-k/x=(1-k)/x>0
这种方法得出来的和你一样。但是,还有别的方法。
这样就可以了
2010全国1理数高考题难么
a+b代表第一列数纵向相加,c+d代表第二列数纵向相加a+c代表第一行数横向相加,b+d代表第二行数横向相加a\b\c\d就是对应了已知四个数(这是新课标选修知识,到时候高二学了你知道了)立体几何题见图
特点一:难度较上年有所增加
2010年高考数学试题与2009年试题在题量和题型上基本保持不变,但与09年相比,能力立意类型试题较多,运算量较大。就整个试卷来说,重点考查函数与导数、数列与不等式、概率统计、直线与圆锥曲线综合的相关内容。
特点二:中等难度试题较多
选择题与往年相比难度偏大。前7题属于基础题,比较容易得分,但从第8 题开始,难度增大。第8题注重考查指数函数、对数函数的图象和性质及学生的估算能力;第9题考查双曲线的第一定义(其中利用重要结论处理比较简捷);第10题考查函数的图象和性质,侧重数形结合思想的应用,包含了对重要不等式或线性规划的应用;第11题侧重考查平面向量与解析几何的综合应用,以及利用重要不等式求函数的最值;第12题属于立体几何类型题目,考查空间想象能力以及体积分割法。
填空题第13题至第15题属于基础题,第16题属于09年高考考题的变形,重点考查圆锥曲线的第二定义。
解答题第17题仍为三角函数问题,但与往年相比有一定的新意,着重考查了正弦定理及三角公式的恒等变形,在思路上与往年试题有所不同;第18题概率统计题考查思路常规,着重考查独立重复事件的概率,难度较小;第19题立体几何问题,传统方法与向量方法并行(相比之下向量法更易入手),和往年相比,变化不大。试题重点考查空间面面关系和线线关系以及二面角的求法,难度适中;第20题导数问题,学生感觉入题容易,但深入较难,不易得高分。此题重点考查了函数的单调性、极值、最值及不等式证明;第21题解析几何问题,重点考查设而不求的常规思路,但由于运算量大,容易使学生产生畏难情绪;第22题数列问题,考查简单的递推关系求通项和不等式证明。第一问较易,大多数学生应该能够顺利完成,第二问难度较大,灵活性较强,能有效的区分不同能力层次的学生群体。
特点三:突出数学思想方法的考查
强化考查函数与方程思想、分类与整合思想、转化与化归思想、特殊与一般的思想。对数学思想方法的考查几乎贯穿于整个试卷中如:第10题、第11题、第12题、第16题、第21题、第22题等。
特点四:注重能力的考查
对学生能力的考查主要体现在运算能力、空间想象能力、分析问题和解决问题的能力以及创新能力。试题从不同思维层次设计不同题目,区分出不同思维层次的考生。压轴题考查学生综合性水平的思维能力和学习潜能,为高水平学生展示数学能力提供机会,体现了高考的选拔功能。
特点五:体现常规,适度创新,凸现学科能力
2010年全国数学试卷充分关注对考生创新意识和创造思维能力的考查。不仅考查对一些定理、公式、法则的理解,而且更多考查了学生灵活运用这些知识和法则分析、解决综合性数学问题的能力。
2010年全国高考数学试题从整张试卷来看,结构是由易到难,梯度把握也比较好,比较有利于各类考生的发展。同时,试题遵循了科学性、公平性、规范性的原则,彰显了时代精神。