您现在的位置是: 首页 > 教育资讯 教育资讯
2014高考三角函数汇编,2017高考三角函数
tamoadmin 2024-06-10 人已围观
简介1.高中数学三角函数2.如何有效掌握高中数学三角函数?完整的三角函数值如下:三角函数的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。三角函数的由来:sine(正弦)一词始于阿拉伯人雷基奥蒙坦。他是十五世纪西欧数学界的*
1.高中数学三角函数
2.如何有效掌握高中数学三角函数?
完整的三角函数值如下:
三角函数的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
三角函数的由来:
sine(正弦)一词始于阿拉伯人雷基奥蒙坦。他是十五世纪西欧数学界的***物,他于1464年完成的著作《论各种三角形》,1533年开始发行,这是一本纯三角学的书,使三角学脱离天文学,独立成为一门数学分科。
cosine(余弦)及cotangent(余切)为英国人根日尔首先使用,最早在1620年伦敦出版的他所著的《炮兵测量学》中出现。
secant(正割)及tangent(正切)为丹麦数学家托马斯·芬克首创,最早见于他的《圆几何学》一书中。
cosecant(余割)一词为锐梯卡斯所创。最早见于他1596年出版的《宫廷乐章》一书。1626年,阿贝尔特·格洛德最早推出简写的三角符号:“sin”、“tan”、“sec”。
1675年,英国人奥屈特最早推出余下的简写三角符号:“cos”、“cot”、“csc”。但直到1748年,经过数学家欧拉的引用后,才逐渐通用起来。
1949年至今,由于受前苏联教材的影响,我国数学书籍中“cot”改为“ctg”;“tan”改为“tg”,其余四个符号均未变。这就是为什么我国市场上流行的进口函数计算器上有“tan”而无“tg”按键的缘故。
以上内容参考?百度百科-三角函数
高中数学三角函数
三角函数公式及应用
一、知识要点
1.三角函数式的变形应利用三角公式从以下三个方面入手:
(1)变名:注意条件与结论中三角函数式的名称有什么差别及联系,通过同角三角函数公式,诱导公式,万能公式等,达到统一函数名称的目的.
(2)变角:注意条件与结论中三角函数式的角有什么差别及联系,通过诱导公式、和、差、倍、半角的三角函数公式等,达到把三角函数中的角统一起来的目的.
(3)变运算形式:根据需要,将条件与结论的运算形式化一,将等式一边的运算形式化成另一边的运算形式,通过升次与降次的转化以达到目的.
2.三角形中的三角函数(内角和定理、正弦定理、余弦定理)
3.应用三角变换公式,要注意公式间的联系,公式成立的条件.每个三角公式的结构特征,都决定了它的双向功能,从左到右及从右到左常常可起到不同的作用.所谓三角恒等变形是指在有意义的条件下有恒等关系,但三角变换常常会改变三角式中角的取值范围,因此在讨论由三角函数式表示的函数性质时,应首先确定其定义域,以确保变形后的函数与原函数是同一函数.
如何有效掌握高中数学三角函数?
三角关系 倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
平方关系:
sin?α+cos?α= 1
tan α×cot α=1
一个特殊公式
(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]
=sin(a+θ)*sin(a-θ)
坡度公式
我们通常把坡面的铅直高度h与水平宽度l的比叫做坡度(也叫坡比), 用字母i表示,
即 i=h / l,坡度的一般形式写成 l : m形式,如i=1:5.如果把坡面与水平面的夹角记作
a(叫做坡角),那么 i=h/l=tan a.
锐角三角函数公式
正弦: sinα=∠α的对边/∠α 的斜边
余弦:cosα=∠α的邻边/∠α的斜边
正切:tanα=∠α的对边/∠α的邻边
余切:cotα=∠α的邻边/∠α的对边
半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
其他
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式
sin5A=16sinA^5-20sinA^3+5sinA
cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式
sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))
cos6A=((-1+2*cosA)*(16*cosA^4-16*cosA^2+1))
tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)
七倍角公式
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))
cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))
cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)
tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))
cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))
tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式
sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))
cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))
tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
N倍角公式
根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)
为方便描述,令sinθ=s,cosθ=c
考虑n为正整数的情形:
cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>比较两边的实部与虚部
实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i*
虚部:i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …
对所有的自然数n:
1. cos(nθ):
公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
2. sin(nθ):
(1)当n是奇数时:公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也 就是sinθ)表示。
(2)当n是偶数时:公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。
例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
两角和,差~
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
三角和公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
和差化积
sinθ+sinφ =2sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
积化和差
sinαsinβ=-[cos(α+β)-cos(α-β)] /2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
双曲函数
sh a = [e^a-e^(-a)]/2
ch a = [e^a+e^(-a)]/2
th a = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
A·sin(ωt+θ)+ B·sin(ωt+φ) =
√{(A+2ABcos(θ-φ)} · sin{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)} }
√表示根号,包括{……}中的内容
记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+(tan(α/2))^2]
cosα=[1-(tan(α/2))^2]/[1+(tan(α/2))^2]
tanα=2tan(α/2)/[1-(tan(α/2))^2]
其他公式
(1) (sinα)^2+(cosα)^2=1(平方和公式)
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
(seca)^2+(csca)^2=(seca)^2(csca)^2
幂级数展开式
sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+…… x∈ R
cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… x∈ R
arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)
arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)
arctan x = x - x^3/3 + x^5/5 -…… (x≤1)
无限公式
sinx=x(1-x^2/π^2)(1-x^2/4π^2)(1-x^2/9π^2)……
cosx=(1-4x^2/π^2)(1-4x^2/9π^2)(1-4x^2/25π^2)……
tanx=8x[1/(π^2-4x^2)+1/(9π^2-4x^2)+1/(25π^2-4x^2)+……]
secx=4π[1/(π^2-4x^2)-1/(9π^2-4x^2)+1/(25π^2-4x^2)-+……]
(sinx)x=cosx/2cosx/4cosx/8……
(1/4)tanπ/4+(1/8)tanπ/8+(1/16)tanπ/16+……=1/π
arctan x = x - x^3/3 + x^5/5 -…… (x≤1)
和自变量数列求和有关的公式
sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)
cosx+cos2x+cos3x+……+cosnx=[cos((n+1)x/2)sin(nx/2)]/sin(x/2)
tan((n+1)x/2)=(sinx+sin2x+sin3x+……+sinnx)/(cosx+cos2x+cos3x+……+cosnx)
sinx+sin3x+sin5x+……+sin(2n-1)x=(sinnx)^2/sinx
cosx+cos3x+cos5x+……+cos(2n-1)x=sin(2nx)/(2sinx)
三角函数一直是高考中的重要考点,让很多同学头疼不已,今天小编来和大家分析一下三角函数部分,帮助大家答疑解惑。
首先我们来看一下,三角函数部分都有哪些重要考点,也可以说,同学们需要掌握哪些重要知识点。
角的概念的推广;弧度制;任意角的三角函数;单位圆中的三角函数线;同角三角函数的基本关系式;正弦、余弦的诱导公式;两角和与差的正弦、余弦、正切;二倍角的正弦、余弦、正切;正弦函数、余弦函数的图像和性质;周期函数;函数y=Asin(ωx+φ)的图像;正切函数的图像和性质;已知三角函数值求角;正弦定理;余弦定理;斜三角形接法。
下面我们来说说, 那么到底为什么很多同学觉得三角函数比较难呢?主要有以下三点原因:
1、三角函数公式繁多,记不住,并且使用时亦易混用或乱用。
2、函数图像变换时,混淆周期变换和平移变换的顺序对平移量的影响。
3、解三角恒等变换问题时,如何从角的差异和相互关系及函数名称的差异等,选择和使用公式进行求解。
对于三角函数这一部分的内容,我建议把它拆成两个模块,几何部分包括各种恒等变换公式,以及后续的解三角形,代数部分则主要是三角函数的图像和性质等。在几何这一部分,我总结了一些高考一定会用到的结论和公式,这些是一定要熟练使用的。
三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想。
先给大家分享到这里,如果需要的话,还可以给大家整理一些经典习题,到时候看看同学们的反馈效果如何~