您现在的位置是: 首页 > 教育资讯 教育资讯

应用题文科高考,高考应用题100道及答案

tamoadmin 2024-06-03 人已围观

简介1.高考双每练P16-8函数应用题2.高考数学的题型及其占比3.湖南高考数学知识点总结2023高考数学哪个卷最难:上海卷。2023年在高考命题将会有相应的调整。当中有一项比较重要的内容就是:为了能让新高考省份实现平稳过渡,确保这些省份的考生能够适应新高考的内容,促进高考试题的平稳,坚决不能出现偏题和怪题,也不能出现超纲内容。相关负责人还表示,未来高考命题会局限在课本的主干知识和重点知识,避免出现冷

1.高考双每练P16-8函数应用题

2.高考数学的题型及其占比

3.湖南高考数学知识点总结

应用题文科高考,高考应用题100道及答案

2023高考数学哪个卷最难:上海卷。

2023年在高考命题将会有相应的调整。当中有一项比较重要的内容就是:为了能让新高考省份实现平稳过渡,确保这些省份的考生能够适应新高考的内容,促进高考试题的平稳,坚决不能出现偏题和怪题,也不能出现超纲内容。相关负责人还表示,未来高考命题会局限在课本的主干知识和重点知识,避免出现冷门知识或者超纲知识。

2023年高考数学难度趋势

2022年新高考1卷的数学题目是很难的,引发了网友们的热议,也让一些高考生没能在考试中取得理想的成绩。按照教育部对于出题的要求,2023年的高考难度大概率会保持目前的趋势,难度不会大幅提升,但也不会比2022年简单太多。

1、首先,依照教育部的要求,高考数学题目可能会与现实中的复杂场景结合。这就要求考生不但具备出色的逻辑推理、计算能力,也对同学们的阅读能力、理解能力提出了很高的要求,做到举一反三是非常重要的。题目的灵活度增加,数学基础如果不够扎实可能会觉得很难,但如果应用能力强,也可能会觉得题目不难。

2、其次,对于数学的考察会更强调数学思想和方法。这就要求同学们在学习过程中掌握数学的核心,如逻辑思维能力、计算能力等。务必要吃透每一个方法,如果解题的时候总是一知半解、似懂非懂,高考的时候很可能会吃苦头。

综合以上,2023年的高考和2022年对比起来差异不会太大,可能难度稍有提升。所以同学们在最后的几个月时间里一定要回归课本,把考纲内的数学基础知识掌握牢固,提升自己举一反三的能力,不必纠结一些难题和偏题。

高考双每练P16-8函数应用题

高中文科数学高考范围有三角函数、向量、概率与统计、立体几何、数列、圆锥曲线、函数、导数与不等式等。

1、三角函数、向量、解三角形

(1)三角函数画图、性质、三角恒等变换、和与差公式。(2)向量的工具性。(3)正弦定理、余弦定理、解三角形背景。

2、概率与统计

(1)古典概型。(2)茎叶图。(3)直方图。(4)回归方程(2x2列联表)。(5)(理)概率分布、期望、方差、排列组合。

3、立体几何

(1)平行。(2)垂直。(3)角a:异面直线角b:(理)二面角、线面角。(4)利用三视图计算面积与体积。

4、数列

(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。(2)错位相减法、裂项求和法。(3)应用题。

5、圆锥曲线(椭圆)与圆

(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。(2)圆的方程,圆与直线的位置关系。

6、函数、导数与不等式

(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。(2)利用基本不等式、对勾函数性质。

三角函数/数列:一般全国卷第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。

概率:一般全国卷第18题会考概率题。概率题相对比较简单,也是必须得分的题,主要还是对作图和识图能力考查比较多。

解析几何:一般全国卷第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。

高考数学的题型及其占比

a^2+a+1=(a-1/2)^2+3/4≥3/4

y=f(x)在[0,+∞)上是减函数 ∴n=f(a^2+a+1)≤f(3/4)

∵y=f(x)为偶函数 ∴m=f(-3/4)=f(3/4)

∴n≤m

故选 B

湖南高考数学知识点总结

高考数学的题型及其占比介绍如下:

基础题占的比例是70%,20%是中等的,10%是难的。?

高考数学各部分占比?

1、高考数学基础题占试卷的比例 基础题占的比例是70%,20%是中等的,10%是难的。 其实文科、理科是有一些差异的。不过一般来说,都是7:2:1,基础题百分之七十,中档题百分之二十,难题百分之十,但是高考每年都是不一样的,比如说它会一年简单,一年难,所以最终会在百分之十左右。所以,尽量不要去管什么难题,将基础题和中档题复习好,最后一定会有个不错的成绩。?

2、数学试卷分布情况 试卷内容及分配比例:集合、简易逻辑10分、数列19分、三角函数19分、立体几何18分、圆锥曲线18分、概率与统计18分、导数18分、算法5分、线性规划5分、不等式5分、向量5分、复数5分、三视图5分 试题难度及分配比例:较易试题、中等试题、较难试题 试题题型及分配比例:选择题40分、填空题30分、解答题80分 。

高三如何提高数学成绩?

1.首先,学生们最好每次上课之前对课本上的内容进行简短地预习,这样对将要学习的知识点有个笼统的了解,标志出自己预习时不懂不太理解的内容,便于在老师上课时学生进行提问,有效解决学生学习问题。?

2.其次,学生在上课时一定要勤于记笔记,对老师所讲内容要具有针对性,做到“取其精华,去其糟粕”。对于数学题目的解法,有时不能光靠脑子,一定要经过周密的笔头计算才能够发现其中的难点并且掌握化解方法,最终得到正确的计算结果。

3.接着课后一定要对老师所讲的内容进行不断练习巩固,把课堂把课堂例题反复演算几遍。加强课后练习,除了作业之外,找一本好的参考书,尽量多做一下书上的练习题(尤其是综合题和应用题)。熟能生巧,这样才能巩固课堂学习的效果,使你的解题速度越来越快。

4.学习数学要善于总结归类,寻找不同的题型、不同的知识点之间的共性和联系,把学过的知识系统化。

 考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!

 高考文科数学考点总结

 第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。

 第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。

 第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

 第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

 第五,概率和统计。这部分和我们的生活联络比较大,属应用题。

 第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

 第七,解析几何。是高考的难点,运算量大,一般含引数。

 湖南高考文科数学考点一:直线方程

 1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

 注:①当或时,直线垂直于轴,它的斜率不存在.

 ②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

 特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

 注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

 附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.

 3. ⑴两条直线平行:

 ∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

 一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且

 推论:如果两条直线的倾斜角为则∥.

 ⑵两条直线垂直:

 两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件

 4. 直线的交角:

 ⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

 ⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

 5. 过两直线的交点的直线系方程为引数,不包括在内

  湖南高考文科数学考点二:轨迹方程

 一、求动点的轨迹方程的基本步骤

 ⒈建立适当的座标系,设出动点M的座标;

 ⒉写出点M的 *** ;

 ⒊列出方程=0;

 ⒋化简方程为最简形式;

 ⒌检验。

 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。

 ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

 ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

 ⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

 ⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。

 ⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

湖南高考文科数学考点三:导数

 一、函式的单调性

 在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.

 f′x≥0?fx在a,b上为增函式.

 f′x≤0?fx在a,b上为减函式.

 二、函式的极值

 1、函式的极小值:

 函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.

 2、函式的极大值:

 函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.

 极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

 三、函式的最值

 1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.

 2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.

 四、求可导函式单调区间的一般步骤和方法

 1、确定函式fx的定义域;

 2、求f′x,令f′x=0,求出它在定义域内的一切实数根;

 3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;

 4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.

湖南高考文科数学考点四:不等式

 1理解不等式的性质及其证明。

 导读

 不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:

 加强化归意识,把比较大小问题转化为实数的运算;

 通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;

 强化函式的性质在大小比较中的重要作用,加强知识间的联络;

 不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a

 一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;

 对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;

 对于含参问题的大小比较要注意分类讨论。

 2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

 导读

 1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。

 2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。

 3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。

 3掌握分析法、综合法、比较法证明的简单不等式。

 导读

 1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。

 2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。

 3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。

  湖南高考文科数学考点五:几何

 1棱柱:

 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

 2棱锥

 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

 表示:用各顶点字母,如五棱锥

 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

 3棱台:

 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

 表示:用各顶点字母,如五棱台

 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

 4圆柱:

 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

 5圆锥:

 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

 6圆台:

 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

 7球体:

 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还:

文章标签: # 直线 # 高考 # 函式