您现在的位置是: 首页 > 教育资讯 教育资讯

2014高考数学卷二_2014年高考数学试卷全国二卷

tamoadmin 2024-05-23 人已围观

简介分析:根据正弦定理和三角形的面积公式,利用不等式的性质 进行证明即可得到结论.解答:解:△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+1/2,∴sin2A+sin2B=-sin2C+1/2,∴sin2A+sin2B+sin2C=1/2,∴2sinAcosA+2sin(B+C)cos(B-C)=1/2,2sinA(cos(B-C)-cos(B+C))=1/2,化

2014高考数学卷二_2014年高考数学试卷全国二卷

分析:根据正弦定理和三角形的面积公式,利用不等式的性质 进行证明即可得到结论.

解答:

解:

∵△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+1/2,

∴sin2A+sin2B=-sin2C+1/2,

∴sin2A+sin2B+sin2C=1/2,

∴2sinAcosA+2sin(B+C)cos(B-C)=1/2,2sinA(cos(B-C)-cos(B+C))=1/2,化为2sinA[-2sinBsin(-C)]=1/2,

∴sinAsinBsinC=1/8.

设外接圆的半径为R,由正弦定理可得:a/sinA=b/sinB=c/sinC=2R,由S=1/2absinC,及正弦定理得sinAsinBsinC=(S/2R^2)=1/8,即R^2=4S,

∵面积S满足1≤S≤2,

∴4≤(R^2)≤8,即2≤R≤2√2,

由sinAsinBsinC=1/8可得8≤abc≤16√2,显然选项C,D不一定正确,

A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,

B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16√2,不一定正确,

故选:A

文章标签: # abc # 2014 # 高考