您现在的位置是: 首页 > 教育政策 教育政策

高考理科数学卷3答案,高考理科数学答案2021三卷

tamoadmin 2024-06-14 人已围观

简介1.求2008 09 10年的江苏高考数学试卷及答案 不要给我超链接2.北京卷高考数学试卷及答案解析2022年3.谁有09年福建省理科高考数学卷的选择题及答案。4.求近五年全国卷高考卷5.2013辽宁高考理科数学选择题12题详细解答6.2019年福建高考数学试卷试题及答案解析(答案WORD版)7.2022全国乙卷理科数学试卷及答案解析 2018年四川高考数学试卷试题及答案解析(答案WORD版)

1.求2008 09 10年的江苏高考数学试卷及答案 不要给我超链接

2.北京卷高考数学试卷及答案解析2022年

3.谁有09年福建省理科高考数学卷的选择题及答案。

4.求近五年全国卷高考卷

5.2013辽宁高考理科数学选择题12题详细解答

6.2019年福建高考数学试卷试题及答案解析(答案WORD版)

7.2022全国乙卷理科数学试卷及答案解析

高考理科数学卷3答案,高考理科数学答案2021三卷

2018年四川高考数学试卷试题及答案解析(答案WORD版)

2015四川高考数学试卷点评

2015年高考数学试卷,遵循《考试大纲》及《考试说明(四川版)》要求,与近年来试题风格一致,切合当前数学教学实际,体现课程改革理念,符合高考考试性质,在平稳推进的基础上有所创新。试题设计立足于学科核心和主干,充分体现数学的科学价值和人文价值,将知识、能力和素质融为一体,深化能力立意,强化知识交汇,重点考查支撑数学学科体系的内容,充分考查基础知识、基本方法、基本思想,深入考查考生的运算求解能力、推理论证能力、抽象概括能力、空间想象能力、应用意识和创新意识,突出考查数学思维、数学思想方法,合理考查学生的探究意识和学习潜能。

全卷难度设置符合高中学生数学学习现状,重视教材考基础,突出思维考能力,体现课改考探究,展现了数学的抽象性、逻辑性、应用性和创造性,突出试题的基础性、综合性、原创性和选拔性,试卷布局合理、层次分明,问题设计科学、表述规范,有利于准确测试不同层次考生的学习水平。

一、重视教材与基础,突出核心内容

试题高度重视教材价值的挖掘与联系,有的题目直接由教材的例题或习题改编,有的问题产生于教材背景。文理科1-8、11-13、6-19等题源于教材,又高于教材,充分发挥了教材在理解数学、理解教学等方面的价值。这种立足于教材编拟高考试题的理念和方法,充分保障了试题背景的公平性,能够有效引导中学数学教学重视教材、深刻理解教材,对进一步推进课程改革、减轻学生过重的学业负担具有良好的导向作用。

全卷重视基础知识的全面考查,覆盖了整个高中数学的所有知识板块;试题设计立足于高中数学的核心和主干,对高中数学中的函数与导数、三角函数、概率统计、解析几何、立体几何、数列、向量、不等式等进行了重点考查。理科4、8、9、13、15、21,文科4、5、8、15、21等题,全面考查函数概念、性质等基础知识;理科5、10、20,文科7、10、20等题,考查直线、圆、圆锥曲线的方程及其简单应用,是解析几何的基础和主体内容;理科14、18题考查空间线面关系和面面夹角的计算,文科14、18题考查空间线面关系、三视图和体积的计算;理科17题,文科3、17题,考查概率统计相关知识;文理科16题,考查数列相关知识;文科3题考查分层抽样的概念,需要考生认识其本质属性;理科14题考查空间线线角的计算,如果概念不清,即使运算无误也不能获得正确结果。这样的内容设计,在全面考查基础的同时,突出考查支撑学科体系的的内容,重视对基础知识和通性通法的考查,对高中毕业生的数学基础和素养进行重点测试,保证了试卷的内容效度,有利于中学数学教学重视基础、强化核心内容和主干知识、回归数学本质。

二、注重能力与方法,强化数学思维

试卷以能力立意设计试题,多角度、多层次地考查了运算求解能力、推理论证能力、空间想象能力、抽象概括能力、数据处理能力、应用意识和创新意识。在此基础上,特别突出了对数学思维的全面、深刻考查,大量题目充分考查了观察、联想、类比、猜想、估算等数学思维方法与能力,对函数与方程、数形结合、分类与整合、化归与转化、特殊与一般等数学思想进行了全面考查。理科15、16、21题,文科15、21题,既考查了几何直观、联想、猜想、估算等直觉思维,又要求考生进行精确计算、严密推理;理科13、17题,文科8、17题,考查了运算求解能力、应用意识;文理科15题,考查了直觉猜想、抽象概括、推理论证和创新意识,对数学思维进行了全面考查,其特点是运算量小、思维量大;文理科16-21等题重点考查运算求解能力和推理论证能力;文理科20、21题,要求考生具备高水平的抽象概括能力、推理论证能力、运算求解能力、数学探究意识和创新意识,考查了多种数学思想与方法。

全卷注重考查学生对数学基本概念、重要定理等的理解与应用,注意控制和减少繁琐的运算。理科7、9、10、14、15、20、21题,文科7、9、10、14、15、21等题,如果灵活运用数形结合、化归与转化、特殊与一般等数学思想,就可简化解题过程、避免繁琐运算;文理科15题,虽然思维要求高,但在深刻理解问题本质的基础上,运用函数与方程、数形结合思想解答,并不需要特殊技巧与复杂运算。这类问题背景深刻、构思巧妙、取材适当、设问合理、切合实际,侧重考查考生对知识的理解和应用,强调科学性、严谨性、抽象性、探究性、综合性和应用性的考查,能够有效检测考生将知识、方法迁移到不同情境的能力,从而检测考生的思维广度、深度以及进一步学习的潜能。

三、关注探究与创新,体现课改理念

试卷从学科整体和思维价值的高度设置问题情境,注重知识间的内在联系与交汇;通过适当增强试题的`综合性,分层次设置试题难度,能更好地体现考试的选拔功能。理科9题涉及函数单调性、线性规划与基本不等式,文理科10题联系抛物线、圆、圆的切线和数形结合思想,具有较强的综合性和一定的难度;理科19题综合三角恒等变换与解三角形,立意鲜明、情境新颖、形式优美,考查考生思维的灵活性;文理科21题,以对数函数、二次函数、导数、函数零点、不等式等知识为载体,考查考生综合运用数学知识、数学方法、数学思想的能力。这样的试题对数学思维的灵活性、深刻性、创造性都有较高要求,具有一定的难度,解答这些问题,需要具有较强的分析问题、探究问题和解决问题的能力。

试题设计紧密结合数学学科特点,通过对探究意识、应用意识和创新意识的考查,充分体现了课程改革理念。文理科10、15、20、21等题考查了探究意识,考生需要深入分析问题情境,从特殊到一般、从直观到抽象进行不同侧面的探究,并合理运用相应的数学方法和思想才能准确、迅速解答。理科20题要求考生探究定点是否存在,若假设定点坐标直接求解则有不少运算障碍;若通过特殊情形的解决,寻求一般的、运动变化的问题的解决思路和方法,对具体的对象进行抽象概括,完成解答则相对简单。这样的问题设计,针对考生的探究意识和创新意识进行考查,保障了试题对较高学习水平层次考生的良好区分。理科13、17,文科8、17等题以考生熟悉的现实生活背景考查考生提炼数量关系、将现实问题转化为数学问题并构造数学模型加以解决的能力,体现了应用意识和实践能力的考查特点。文理21题展示了数学学科的抽象性和严谨性,要求考生具有高层次的理性思维,考生解答时可以采用“联系几何直观—探索解题思路—提出合情猜想—构造辅助函数—结合估算精算—进行推理证明”的思路,整个解答过程与数学研究的过程基本一致,能较好地促进考生在数学学习的过程中掌握数学知识、探究数学问题和发现数学规律。这些试题具有立意深远、背景深刻、设问巧妙等特点,富含思维价值,体现了课程改革理念,是检测考生理性思维广度、深度和学习潜能的良好素材。这样的设计,对考生评价合理、科学,鼓励积极、主动、探究式的学习,有利于引导中学数学教学注重提高学生的思维能力、发展应用意识和创新意识,对全面深化课程改革、提高中学数学教学质量有十分积极的作用。

求2008 09 10年的江苏高考数学试卷及答案 不要给我超链接

2007年普通高等学校招生全国统一考试(湖北卷)

数 学(理工农医类)

本试卷共4页,满分150分,考试时间120分钟。

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的

1.如果 的展开式中含有非零常数项,则正整数n的最小值为

A.3

B.5

C.6

D.10

2.将的图象按向量a=平移,则平移后所得图象的解析式为

A.

B.

C.

D.

3.设P和Q是两个集合,定义集合P-Q=,如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于

A.{x|0<x<1}

B.{x|0<x≤1}

C.{x|1≤x<2}

D.{x|2≤x<3}

4.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m'和n',给出下列四个命题:

①m'⊥n'm⊥n

②m⊥n m'⊥n'

③m'与n'相交m与n相交或重合

④m'与n'平行m与n平行或重合

其中不正确的命题个数是

A.1

B.2

C.3

D.4

5.已知p和q是两个不相等的正整数,且q≥2,则

A.0

B.1

C.

D.

6.若数列{an}满足N*),则称{an}为“等方比数列”

甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则

A.甲是乙的充分条件但不是必要条件

B.甲是乙的必要条件但不是充分条件

C.甲是乙的充要条件

D.甲既不是乙的充分条件也不是乙的必要条件

7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于

A.-1

B.1

C.

D.

8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是

A.2

B.3

C.4

D.5

9.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是

A.

B.

C.

D.

10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有

A.60条

B.66条

C.72条

D.78条

二、填空题:本大题共5小题,每小题5分,共25分。

11.已知函数y=2x-a 的反函数是y=bx+3,则 a= ;b= 。

12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是 。(写出一个有序实数对即可)

13.设变量x,y满足约束条件则目标函数2x+y的最小值为 。

14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率 。(用数值作答)

15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:

(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 。

(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室。

三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。

16.(本小题满分12分)

已知△ABC的面积为3,且满足0≤≤6,设和的夹角为θ。

(Ⅰ)求θ的取值范围;

(Ⅱ)求函数f(θ)=2sin2的最大值与最小值。

17.(本小题满分12分)

分 组

频 数

4

25

30

29

10

2

合 计

100

在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)

共有100个数据,将数据分组如右表:

(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出

频率分布直方图;

(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概

率是多少;

(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。

18.(本小题满分12分)

如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。

(Ⅰ)求证:平面VAB⊥平面VCD;

(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。

19.(本小题满分12分)

在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。

(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;

(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(此题不要求在答题卡上画图)

20.(本小题满分13分)

已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0。设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同。

(Ⅰ)用a表示b,并求b的最大值;

(Ⅱ)求证:f(x) ≥g(x) (x>0)。

21.(本小题满分14分)

已知m,n为正整数。

(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;

(Ⅱ)对于n≥6,已知,求证,m=1,2…,n;

(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n。

2007年普通高等学校招生全国统一考试(湖北卷)

数 学(理工农医类)

参考答案

一、选择题:本题考查基础知识和基本运算。每小题5分,满分50分。

1.B2.A3.B4.D5.C6.B7.A8.D9.C10.A

二、填空题:本题考查基础知识和基本运算。每小题5分,满分25分。

11.6;

12.(2,1)(或满足a=2b的任一组非零实数对(a,b))

13.—

14.

15.;0.6

三、解答题:本大题共6小题,共75分。

16.本小题主要考查平面向量数量积的计算,解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力。

解:

(Ⅰ)设△ABC中角A,B,C的对边分别为a,b,c,

则由.

(Ⅱ)

=.

.

即当.

17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力

分  组

频 数

频 率

4

0.04

25

0.25

30

0.30

29

0.29

10

0.10

2

0.02

合 计

100

1.00

(Ⅱ)纤度落在中的概率约为0.30+0.29+0.10=0.69,纤度小于1.40的概率约为0.04+0.25+×0.30=0.44.

(Ⅲ)总体数据的期望约为

1.32×0.04+1.36×0.25+1.40×0.30+1.44×0.29+1.48×0.10+1.52×0.02=1.4088.

18.本小题主要考查线面关系、直线与平面成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.

解法1:

(Ⅰ)是等腰三角形,又D是AB的中点,

(Ⅱ)过点C在平面VD内作CH⊥VD于H,则由(Ⅰ)知CH⊥平面VAB.连接BH,于是∠CBH就是直线BC与平面VAB所成的角

在Rt△CHD中,设,

即直线BC与平面VAB所成角的取值范围为(0,).

解法2:

(Ⅰ)以CA、CB、CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),D(),

从而

同理

=-

(Ⅱ)设直线BC与平面VAB所成的角为φ,平面VAB的一个法向量为n=(x,y,z),

则由n·

19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.

解法1:

(Ⅰ)依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得消去y得x2-2pkx-2p2=0.

由韦达定理得x1+x2=2pk,x1x2=-2p2.

于是

.

(Ⅱ)假设满足条件的直线l存在,其方程为y=a,AC的中点为径的圆相交于点P、Q,PQ的中点为H,则

=.

=

=

令,得为定值,故满足条件的直线l存在,其方程为,

即抛物线的通径所在的直线.

解法2:

(Ⅰ)前同解法1,再由弦长公式得

又由点到直线的距离公式得.

从而,

(Ⅱ)假设满足条件的直线t存在,其方程为y=a,则以AC为直径的圆的方程为

将直线方程y=a代入得

设直线l与以AC为直径的圆的交点为P(x2,y2),Q(x4,y4),则有

令为定值,故满足条件的直线l存在,其方程为.

即抛物线的通径所在的直线。

20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力

解:

(Ⅰ)设y=f(x)与y=g(x)(x>0)在公共点(x0,y0)处的切线相同,

.

即有

令于是

故为减函数,

于是h(t)在

(Ⅱ)设

故F(x)在(0,a)为减函数,在(a,+)为增函数,

于是函数

故当x>0时,有

21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.

解法1:

(Ⅰ)证:用数学归纳法证明:

(i)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,

所以左边≥右边,原不等式成立;

(ii)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,

两边同乘以1+x得

所以时,不等式也成立。

综合(i)(ii)知,对一切正整数m,不等式都成立.

(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得

于是

(Ⅲ)解:由(Ⅱ)知,当n≥6时,

故只需要讨论n=1,2,3,4,5的情形;

当n=1时,3≠4,等式不成立;

当n=2时,32+42=52,等式成立;

当n=3时,33+43+53=63,等式成立;

当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;

当n=5时,同n=4的情形可分析出,等式不成立.

综上,所求的n只有n=2,3

解法2:

(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:

当x>-1,且x≠0时,m≥2,(1+x)m>1+mx. 1

(i)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;

(ii)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.

于是在不等式(1+x)k>1+kx两边同乘以1+x得

(1+x)k·(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,

所以(1+x)k+1>1+(k+1)x,即当m=k+1时,不等式①也成立

综上所述,所证不等式成立

(Ⅱ)证:当

而由(Ⅰ),

(Ⅲ)解:假设存在正整数成立,

即有()+=1②

又由(Ⅱ)可得

()+

+与②式矛盾,

故当n≥6时,不存在满足该等式的正整数n。

故只需要讨论n=1,2,3,4,5的情形;

当n=1时,3≠4,等式不成立;

当n=2时,32+42=52,等式成立;

当n=3时,33+43+53=63,等式成立;

当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;

当n=5时,同n=4的情形可分析出,等式不成立

综上,所求的n只有n=2,3

2007年普通高等学校招生全国统一考试(湖北卷)

数 学(理工农医类)

本试卷共4页,满分150分,考试时间120分钟。

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的

1.如果 的展开式中含有非零常数项,则正整数n的最小值为

A.3

B.5

C.6

D.10

2.将的图象按向量a=平移,则平移后所得图象的解析式为

A.

B.

C.

D.

3.设P和Q是两个集合,定义集合P-Q=,如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于

A.{x|0<x<1}

B.{x|0<x≤1}

C.{x|1≤x<2}

D.{x|2≤x<3}

4.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m'和n',给出下列四个命题:

①m'⊥n'm⊥n

②m⊥n m'⊥n'

③m'与n'相交m与n相交或重合

④m'与n'平行m与n平行或重合

其中不正确的命题个数是

A.1

B.2

C.3

D.4

5.已知p和q是两个不相等的正整数,且q≥2,则

A.0

B.1

C.

D.

6.若数列{an}满足N*),则称{an}为“等方比数列”

甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则

A.甲是乙的充分条件但不是必要条件

B.甲是乙的必要条件但不是充分条件

C.甲是乙的充要条件

D.甲既不是乙的充分条件也不是乙的必要条件

7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于

A.-1

B.1

C.

D.

8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是

A.2

B.3

C.4

D.5

9.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是

A.

B.

C.

D.

10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有

A.60条

B.66条

C.72条

D.78条

二、填空题:本大题共5小题,每小题5分,共25分。

11.已知函数y=2x-a 的反函数是y=bx+3,则 a= ;b= 。

12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是 。(写出一个有序实数对即可)

13.设变量x,y满足约束条件则目标函数2x+y的最小值为 。

14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率 。(用数值作答)

15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:

(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 。

(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室。

三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。

16.(本小题满分12分)

已知△ABC的面积为3,且满足0≤≤6,设和的夹角为θ。

(Ⅰ)求θ的取值范围;

(Ⅱ)求函数f(θ)=2sin2的最大值与最小值。

17.(本小题满分12分)

分 组

频 数

4

25

30

29

10

2

合 计

100

在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)

共有100个数据,将数据分组如右表:

(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出

频率分布直方图;

(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概

率是多少;

(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。

18.(本小题满分12分)

如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。

(Ⅰ)求证:平面VAB⊥平面VCD;

(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。

19.(本小题满分12分)

在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。

(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;

(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(此题不要求在答题卡上画图)

20.(本小题满分13分)

已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0。设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同。

(Ⅰ)用a表示b,并求b的最大值;

(Ⅱ)求证:f(x) ≥g(x) (x>0)。

21.(本小题满分14分)

已知m,n为正整数。

(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;

(Ⅱ)对于n≥6,已知,求证,m=1,2…,n;

(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n。

字数太多,复制不上去,想要的话,我给你发

北京卷高考数学试卷及答案解析2022年

10年的

一、填空题1、设集合A={-1,1,3},B={a+2,a2+4},AB={3},则实数a=______▲________

2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________

3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__

4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。

5、设函数f(x)=x(ex+ae-x),xR,是偶函数,则实数a=_______▲_________

6、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______

7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S1 n1 SS+2n S33 nn+1 否 输出S 结束 是

8、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____

9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____

10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____

11、已知函数,则满足不等式的x的范围是____▲____

12、设实数x,y满足38,49,则的最大值是_____▲____

13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则__▲

14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=,则S的最小值是_______▲_______

二、解答题

15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形两条对角线的长(2)设实数t满足()=0,求t的值

16、(14分)如图,四棱锥P-ABCD中,PD平面ABCD,PD=DC=BC=1,AB=2,AB‖DC,BCD=900(1)求证:PCBC(2)求点A到平面PBC的距离

17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角ABE=α,ADE=β(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大

18.(16分)在平面直角坐标系中,如图,已知椭圆的左右顶点为A,B,右顶点为F,设过点T()的直线TA,TB与椭圆分别交于点M,,其中m>0,①设动点P满足,求点P的轨迹②设,求点T的坐标③设,求证:直线MN必过x轴上的一定点(其坐标与m无关)ABOF

19.(16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列.①求数列的通项公式(用表示)②设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为

20.(16分)设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质.(1)设函数,其中为实数①求证:函数具有性质②求函数的单调区间(2)已知函数具有性质,给定,,且,若||<||,求的取值范围

理科附加题21(从以下四个题中任选两个作答,每题10分)(1)几何证明选讲AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k0,kR,M=,N=,点A、B、C在矩阵MN对应的变换下得到点A1,B1,C1,△A1B1C1的面积是△ABC面积的2倍,求实数k的值(3)参数方程与极坐标在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值(4)不等式证明选讲已知实数a,b0,求证:22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立(1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列(2)求生产4件甲产品所获得的利润不少于10万元的概率23、(10分)已知△ABC的三边长为有理数(1)求证cosA是有理数(2)对任意正整数n,求证cosnA也是有理数

谁有09年福建省理科高考数学卷的选择题及答案。

多年来北京卷会在最后一题做大胆的创新。具体来说,北京卷的最后一题并不执着于具体的知识或 方法 ,而是通过全新的背景,考查一般意义下的数学素养。下面是我为大家收集的关于北京卷高考数学试卷及答案解析2022年。希望可以帮助大家。

北京卷高考数学试卷

北京卷高考数学答案解析

高中数学知识汇总

必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程:

必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2

选修1--1:重点:高考占30分

1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)

理科:选修2—1、2—2、2—3

选修2--1:1、逻辑用语 2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)

选修2--2:1、导数与微积分2、推理证明:一般不考3、复数

选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:

高考的知识板块

集合与简单逻辑:5分或不考

函数:高考60分:①、指数函数 ②对数函数 ③二次函数 ④三次函数 ⑤三角函数 ⑥抽象函数(无函数表达式,不易理解,难点)

平面向量与解三角形

立体几何:22分左右

不等式:(线性规则)5分必考

数列:17分 (一道大题+一道选择或填空)易和函数结合命题

平面解析几何:(30分左右)

计算原理:10分左右

概率统计:12分----17分

复数:5分

推理证明

一般高考大题分布

1、17题:三角函数

2、18、19、20 三题:立体几何 、概率 、数列

3、21、22 题:函数、圆锥曲线

成绩不理想一般是以下几种情况:

做题不细心,(会做,做不对)

基础知识没有掌握

解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)

心理素质不好

总之学__数学一定要掌握科学的学__方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳 总结

北京卷高考数学试卷及答案解析2022年相关 文章 :

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2022年全国新高考II卷数学真题及答案

★ 2022高考全国乙卷试题及答案(理科)

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022年新高考Ⅱ卷数学试题及答案解析

★ 2022年新高考Ⅰ卷数学真题试卷及答案

★ 2022高考甲卷数学真题试卷及答案

★ 2022高考全国甲卷文综试题及答案一览

★ 2022高考全国甲卷数学试题及答案

★ 全国新高考II卷2022英语试题及答案解析

求近五年全国卷高考卷

2009年普通高等学校招生全国统一考试(福建卷)

数学(理工农医类)

一. 选择题:本小题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 函数 最小值是

A.-1 B. C. D.1

1.答案:B

[解析]∵ ∴ .故选B

2.已知全集U=R,集合 ,则 等于

A. { x ∣0 x 2} B { x ∣0<x<2}

C. { x ∣x<0或x>2} D { x ∣x 0或x 2}

2.答案:A

[解析]∵计算可得 或 ∴ .故选A

3.等差数列 的前n项和为 ,且 =6, =4, 则公差d等于

A.1 B C.- 2 D 3

3.答案:C

[解析]∵ 且 .故选C

4. 等于

A. B. 2 C. -2 D. +2

4.答案:D

[解析]∵ .故选D

5.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 >

的是

A. = B. = C . = D

5.答案:A

[解析]依题意可得函数应在 上单调递减,故由选项可得A正确。

6.阅读右图所示的程序框图,运行相应的程序,输出的结果是w.w.w.k.s.5.u.c.o.m

A.2 B .4 C. 8 D .16

6.答案:C

[解析]由算法程序图可知,在n =4前均执行”否”命令,故n=2×4=8. 故选C

7.设m,n是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 // 的一个充分而不必要条件是w.w.w.k.s.5.u.c.o.m

A.m // 且l // B. m // l 且n // l

C. m // 且n // D. m // 且n // l

7.答案:B

[解析]若 ,则可得 .若 则存在

8.已知某运动员每次投篮命中的概率都为40%。现采用随机模拟的方法估计该运动

员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,

指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为

A.0.35 B 0.25 C 0.20 D 0.15

8.答案:B

[解析]由随机数可估算出每次投篮命中的概率 则三次投篮命中两次为 0.25故选B

9.设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,

a c ∣a∣=∣c∣,则∣b ? c∣的值一定等于w.w.w.k.s.5.u.c.o.m

A. 以a,b为两边的三角形面积 B 以b,c为两边的三角形面积

C.以a,b为邻边的平行四边形的面积 D 以b,c为邻边的平行四边形的面积

9.答案:C

[解析]依题意可得 故选C.

10.函数 的图象关于直线 对称。据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程 的解集都不可能是

A. B C D

10. 答案:D

[解析]本题用特例法解决简洁快速,对方程 中 分别赋值求出 代入 求出检验即得.

第二卷 (非选择题共100分)

二、填空题:本大题共5小题,每小题4分,共20分。把答案填在答题卡的相应位置。

11.若 (i为虚数单位, )则 _________ w.w.w.k.s.5.u.c.o.m

11. 答案:2

解析:由 ,所以 故 。

12.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示。记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清。若记分员计算无误,则数字 应该是___________

12. 答案:1

解析:观察茎叶图,

可知有 。

13.过抛物线 的焦点F作倾斜角为 的直线交抛物线于A、B两点,若线段AB的长为8,则 ________________ w.w.w.k.s.5.u.c.o.m

13. 答案:2

解析:由题意可知过焦点的直线方程为 ,联立有 ,又 。

14.若曲线 存在垂直于 轴的切线,则实数 取值范围是_____________.

14. 答案:

解析:由题意可知 ,又因为存在垂直于 轴的切线,

所以 。

15.五位同学围成一圈依序循环报数,规定:

①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;

②若报出的数为3的倍数,则报该数的同学需拍手一次

已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.

15. 答案:5

解析:由题意可设第 次报数,第 次报数,第 次报数分别为 , , ,所以有 ,又 由此可得在报到第100个数时,甲同学拍手5次。

三解答题w.w.w.k.s.5.u.c.o.m

16.(13分)

从集合 的所有非空子集中,等可能地取出一个。

(1) 记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;

(2) 记所取出的非空子集的元素个数为 ,求 的分布列和数学期望E

16、解:(1)记”所取出的非空子集满足性质r”为事件A

基本事件总数n= =31

事件A包含的基本事件是{1,4,5}、{2,3,5}、{1,2,3,4}

事件A包含的基本事件数m=3

所以

(II)依题意, 的所有可能取值为1,2,3,4,5

又 , ,

故 的分布列为:

1 2 3 4 5

P

从而E +2 +3 +4 +5

17(13分)

如图,四边形ABCD是边长为1的正方形, ,

,且MD=NB=1,E为BC的中点

(1) 求异面直线NE与AM所成角的余弦值

(2) 在线段AN上是否存在点S,使得ES 平面AMN?若存在,求线段AS的长;若不存在,请说明理由w.w.w.k.s.5.u.c.o.m

17.解析:(1)在如图,以D为坐标原点,建立空间直角坐标

依题意,得 。

所以异面直线 与 所成角的余弦值为 .A

(2)假设在线段 上存在点 ,使得 平面 .

,

可设

又 .

由 平面 ,得 即

故 ,此时 .

经检验,当 时, 平面 .

故线段 上存在点 ,使得 平面 ,此时 .

18、(本小题满分13分)

如图,某市拟在长为8km的道路OP的一侧修建一条运动

赛道,赛道的前一部分为曲线段OSM,该曲线段为函数

y=Asin x(A>0, >0) x [0,4]的图象,且图象的最高点为

S(3,2 );赛道的后一部分为折线段MNP,为保证参赛

运动员的安全,限定 MNP=120

(I)求A , 的值和M,P两点间的距离;

(II)应如何设计,才能使折线段赛道MNP最长? w.w.w.k.s.5.u.c.o.m

18.本小题主要考查三角函数的图象与性质、解三角形等基础知识,考查运算求解能力以及应用数学知识分析和解决实际问题的能力,考查化归与转化思想、数形结合思想,

解法一

(Ⅰ)依题意,有 , ,又 , 。

当 是,

(Ⅱ)在△MNP中∠MNP=120°,MP=5,

设∠PMN= ,则0°< <60°

由正弦定理得

,

0°< <60°, 当 =30°时,折线段赛道MNP最长

亦即,将∠PMN设计为30°时,折线段道MNP最长

解法二:

(Ⅰ)同解法一

(Ⅱ)在△MNP中,∠MNP=120°,MP=5,

由余弦定理得 ∠MNP=

从而 ,即

当且仅当 时,折线段道MNP最长

注:本题第(Ⅱ)问答案及其呈现方式均不唯一,除了解法一、解法二给出的两种设计方式,还可以设计为:① ;② ;③点N在线段MP的垂直平分线上等

19、(本小题满分13分)

已知A,B 分别为曲线C: + =1(y 0,a>0)与x轴

的左、右两个交点,直线 过点B,且与 轴垂直,S为 上

异于点B的一点,连结AS交曲线C于点T.

(1)若曲线C为半圆,点T为圆弧 的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 ,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。w.w.w.k.s.5.u.c.o.m

19.解析

解法一:

(Ⅰ)当曲线C为半圆时, 如图,由点T为圆弧 的三等分点得∠BOT=60°或120°.

(1)当∠BOT=60°时, ∠SAE=30°.

又AB=2,故在△SAE中,有

(2)当∠BOT=120°时,同理可求得点S的坐标为 ,综上,

(Ⅱ)假设存在 ,使得O,M,S三点共线.

由于点M在以SB为直线的圆上,故 .

显然,直线AS的斜率k存在且k>0,可设直线AS的方程为 .

设点

故 ,从而 .

亦即

由 得

由 ,可得 即

经检验,当 时,O,M,S三点共线. 故存在 ,使得O,M,S三点共线.

解法二:

(Ⅰ)同解法一.

(Ⅱ)假设存在a,使得O,M,S三点共线.

由于点M在以SO为直径的圆上,故 .

显然,直线AS的斜率k存在且K>0,可设直线AS的方程为

设点 ,则有

由 所直线SM的方程为

O,S,M三点共线当且仅当O在直线SM上,即 .

故存在 ,使得O,M,S三点共线.

20、(本小题满分14分)

已知函数 ,且 w.w.w.k.s.5.u.c.o.m

(1) 试用含 的代数式表示b,并求 的单调区间;

(2)令 ,设函数 在 处取得极值,记点M ( , ),N( , ),P( ), ,请仔细观察曲线 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:

(I)若对任意的m ( , x ),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;

(II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)w.w.w.k.s.5.u.c.o.m

20.解法一:

(Ⅰ)依题意,得

由 .

从而

①当a>1时,

当x变化时, 与 的变化情况如下表:

x

+ - +

单调递增 单调递减 单调递增

由此得,函数 的单调增区间为 和 ,单调减区间为 。

②当 时, 此时有 恒成立,且仅在 处 ,故函数 的单调增区间为R

③当 时, 同理可得,函数 的单调增区间为 和 ,单调减区间为

综上:

当 时,函数 的单调增区间为 和 ,单调减区间为 ;

当 时,函数 的单调增区间为R;

当 时,函数 的单调增区间为 和 ,单调减区间为 .

(Ⅱ)由 得 令 得

由(1)得 增区间为 和 ,单调减区间为 ,所以函数 在处 取得极值,故M( )N( )。

观察 的图象,有如下现象:

①当m从-1(不含-1)变化到3时,线段MP的斜率与曲线 在点P处切线的斜率 之差Kmp- 的值由正连续变为负。

②线段MP与曲线是否有异于H,P的公共点与Kmp- 的m正负有着密切的关联;

③Kmp- =0对应的位置可能是临界点,故推测:满足Kmp- 的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线 在点 处的切线斜率 ;

线段MP的斜率Kmp

当Kmp- =0时,解得

直线MP的方程为

当 时, 在 上只有一个零点 ,可判断 函数在 上单调递增,在 上单调递减,又 ,所以 在 上没有零点,即线段MP与曲线 没有异于M,P的公共点。

当 时, .

所以存在 使得

即当 MP与曲线 有异于M,P的公共点

综上,t的最小值为2.

(2)类似(1)于中的观察,可得m的取值范围为

解法二:

(1)同解法一.

(2)由 得 ,令 ,得

由(1)得的 单调增区间为 和 ,单调减区间为 ,所以函数在处取得极值。故M( ).N( )

(Ⅰ) 直线MP的方程为

线段MP与曲线 有异于M,P的公共点等价于上述方程在(-1,m)上有根,即函数

上有零点.

因为函数 为三次函数,所以 至多有三个零点,两个极值点.

又 .因此, 在 上有零点等价于 在 内恰有一个极大值点和一个极小值点,即 内有两不相等的实数根.

等价于 即

又因为 ,所以m 的取值范围为(2,3)

从而满足题设条件的r的最小值为2.

21、本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中,

(1)(本小题满分7分)选修4-4:矩阵与变换w.w.w.k.s.5.u.c.o.m

已知矩阵M 所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标

(2)(本小题满分7分)选修4-4:坐标系与参数方程

已知直线l:3x+4y-12=0与圆C: ( 为参数 )试判断他们的公共点个数

(3)(本小题满分7分)选修4-5:不等式选讲

解不等式∣2x-1∣<∣x∣+1

21.

(1)解:依题意得

由 得 ,故

从而由 得

故 为所求.

(2)解:圆的方程可化为 .

其圆心为 ,半径为2.

(3)解:当x<0时,原不等式可化为

又 不存在;

当 时,原不等式可化为

综上,原不等式的解集为

2013辽宁高考理科数学选择题12题详细解答

一、

2006年普通高等学校招生全国统一考试——数学(文)(上海)

2006年普通高等学校招生全国统一考试——数学(文)(陕西)

2006年普通高等学校招生全国统一考试——数学(文)(山东)

2006年普通高等学校招生全国统一考试——数学(文)(全国Ⅱ)

2006年普通高等学校招生全国统一考试——数学(文)(全国Ⅰ)

2006年普通高等学校招生全国统一考试——数学(文)(辽宁)

2006年普通高等学校招生全国统一考试——数学(文)(湖南)

2006年普通高等学校招生全国统一考试——数学(文)(湖北)

2006年普通高等学校招生全国统一考试——数学(文)(福建)

2006年普通高等学校招生全国统一考试——数学(文)(北京卷)

2006年普通高等学校招生全国统一考试——数学(理)(重庆)

2006年普通高等学校招生全国统一考试——数学(文)(安徽)

2006年普通高等学校招生全国统一考试——数学(理)(天津)

2006年普通高等学校招生全国统一考试——数学(理)(浙江)

2006年普通高等学校招生全国统一考试——数学(理)(四川)

2006年普通高等学校招生全国统一考试——数学(理)(上海)

2006年普通高等学校招生全国统一考试——数学(理)(山东)

2006年普通高等学校招生全国统一考试——数学(理)(陕西)

2006年普通高等学校招生全国统一考试——数学(理)(全国Ⅰ)

2006年普通高等学校招生全国统一考试——数学(理)(全国Ⅱ)

2006年普通高等学校招生全国统一考试——数学(理)(江西)

2006年普通高等学校招生全国统一考试——数学(理)(辽宁)

2006年普通高等学校招生全国统一考试——数学(理)(湖南)

2006年普通高等学校招生全国统一考试——数学(理)(湖北)

2006年普通高等学校招生全国统一考试——数学(理)(福建)

2006年普通高等学校招生全国统一考试——数学(理)(北京卷)

2006年普通高等学校招生全国统一考试——数学(理)(安徽)

2006年普通高等学校招生全国统一考试——数学(江苏卷)

2005年普通高等学校招生全国统一考试——数学文(重庆卷)

2005年普通高等学校招生全国统一考试——数学文(浙江卷)

2005年普通高等学校招生全国统一考试——数学文(上海卷)

2005年普通高等学校招生全国统一考试——数学文(天津卷)

2005年普通高等学校招生全国统一考试——数学文(全国Ⅲ)

2005年普通高等学校招生全国统一考试——数学文(山东卷)

2005年普通高等学校招生全国统一考试——数学文(全国Ⅰ)

2005年普通高等学校招生全国统一考试——数学文(江西卷)

2005年普通高等学校招生全国统一考试——数学文(湖南卷)

2005年普通高等学校招生全国统一考试——数学文(湖北卷)

2005年普通高等学校招生全国统一考试——数学文(福建卷)

2005年普通高等学校招生全国统一考试——数学文(北京)

2005年普通高等学校招生全国统一考试——数学理(重庆卷)

2005年普通高等学校招生全国统一考试——数学理(浙江卷)

2005年普通高等学校招生全国统一考试——数学理(全国Ⅱ)

2005年普通高等学校招生全国统一考试——数学理(上海卷)

2008届高三全国第一次联考数学试题

2007年普通高等学校招生全国统一考试文科数学试题及答案-上海卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-重庆卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-四川卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-天津卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-陕西卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-山东卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-全国2

2007年普通高等学校招生全国统一考试文科数学试卷及答案-全国1

2007年普通高等学校招生全国统一考试文科数学试卷及答案-辽宁卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-江西卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-湖南卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-广东卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-湖北卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-福建卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-北京卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-安徽卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-重庆卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-浙江卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-天津卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-四川卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-上海卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-陕西卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-全国2

2007年普通高等学校招生全国统一考试理科数学试卷及答案-全国1

2007年普通高等学校招生全国统一考试理科数学试卷及答案-江西卷

2005年高考文科数学试题全国卷1(河北、河南、山西、安徽)

2005年高考理科数学试题全国卷1(河北、河南、山西、安徽)

2005年高考理科数学试题及答案全国卷3(四川、陕西、云南)

2004年全国普通高等学校招生全国统一考试(广东卷)数学

2004年普通高等学校招生全国统一考试文科(上海卷)数学

2004年普通高等学校招生全国统一考试文科(重庆卷)数学

2004年普通高等学校招生全国统一考试理科(广西卷)数学

2004年普通高等学校招生全国统一考试理科(福建卷)数学

2004年普通高等学校招生全国统一考试Ⅳ数学

2004年普通高等学校招生全国统一考试Ⅳ(甘肃、青海、宁夏、贵州、新疆等地)数学

2004年普通高等学校招生全国统一考试Ⅲ数学

2004年普通高等学校招生全国统一考试Ⅲ(老课程卷:内蒙古、海南、西藏、陕西、广西等地)数学

2004年普通高等学校招生全国统一考试Ⅱ数学

2004年普通高等学校招生全国统一考试Ⅱ(四川、吉林、黑龙江、云南等地)数学

2004年普通高等学校招生全国统一考试Ⅰ(河南、河北、山东、山西、安徽、江西等地)数学

2004年普通高等学校招生全国统一考试Ⅰ数学

2004年普通高等学校招生全国统一考试(浙江卷)数学(文史类)

2004年普通高等学校招生全国统一考试(浙江卷)数学

2004年普通高等学校招生全国统一考试(辽宁卷)数学

2004年普通高等学校招生全国统一考试(天津卷)数学(文史类)

2004年普通高等学校招生全国统一考试(江苏卷)数学

2004年普通高等学校招生全国统一考试(湖南卷)数学(文史类)

2004年普通高等学校招生全国统一考试(北京卷)数学

2004年普通高等学校招生全国统一考试(湖北卷)数学(文科类)

2004年普通高等学校招生全国统一考试(北京)数学(理工农医类)

2000年普通高等学校招生全国统一考试Ⅰ(广东卷)数学

2000年普通高等学校招生全国统一考试(江西、天津卷)(文史类)数学

2000年普通高等学校招生全国统一考试(理工农医类)数学

1999年普通高等学校招生全国统一考试(理工农医类)数学

2000年普通高等学校招生全国统一考试(北京、安徽)数学(理工农医类)

1998年普通高等学校招生全国统一考试(理工农医类)数学

1997年普通高等学校招生全国统一考试(理工农医类)数学

1995年普通高等学校招生全国统一考试(理工农医类)数学

1994年普通高等学校招生全国统一考试(理工农医类)数学

1993年普通高等学校招生全国统一考试(理工农医类)数学

1992年普通高等学校招生全国统一考试(理工农医类)数学

1989年普通高等学校招生全国统一考试(理工农医类)数学

1990年普通高等学校招生全国统一考试(文史类)数学

1991年普通高等学校招生全国统一考试(理工农医类)数学

1988年普通高等学校招生全国统一考试(理工农医类)数学

1952-1999年全国高考试卷及答案-数学-pdf版

2005年高考英语试题及答案全国卷2(黑龙江、吉林、广西)

2005年全国高考英语试题及答案(湖南卷)

2005年全国高考英语试题及答案(word)安徽

2005年全国高考英语试题及答案(word)(广东)

2006年普通高等学校招生全国统一考试黄冈市答题适应性训练试题英语

2007年普通高等学校招生全国统一考试英语试题及答案-浙江卷

2007年普通高等学校招生全国统一考试英语试题及答案-安徽卷

2007年普通高等学校招生全国统一考试英语试卷及答案-天津卷

2007年普通高等学校招生全国统一考试英语试卷及答案-重庆卷

2007年普通高等学校招生全国统一考试英语试卷及答案-四川卷

2007年普通高等学校招生全国统一考试英语试卷及答案-上海卷

2007年普通高等学校招生全国统一考试英语试卷及答案-陕西卷

2007年普通高等学校招生全国统一考试英语试卷及答案-山东卷

2007年普通高等学校招生全国统一考试英语试卷及答案-全国2

2007年普通高等学校招生全国统一考试英语试卷及答案-全国1

2007年普通高等学校招生全国统一考试英语试卷及答案-辽宁卷

2007年普通高等学校招生全国统一考试英语试卷及答案-江西卷

2007年普通高等学校招生全国统一考试英语试卷及答案-江苏卷

2007年普通高等学校招生全国统一考试英语试卷及答案-湖南卷

2007年普通高等学校招生全国统一考试英语试卷及答案-湖北卷

2007年普通高等学校招生全国统一考试英语试卷及答案-广东卷

2007年普通高等学校招生全国统一考试英语试卷及答案-北京卷

2007年普通高等学校招生全国统一考试英语试卷及答案-福建卷

1950-1999年全国高考试卷及答案-英语-pdf版

2004年普通高等学校招生全国统一考试英语试卷及答案(重庆卷)

2004年普通高等学校招生全国统一考试英语试卷及答案(浙江卷)

2004年普通高等学校招生全国统一考试英语试卷及答案(天津卷)

2004年普通高等学校招生全国统一考试英语试卷及答案(上海卷)

2004年普通高等学校招生全国统一考试英语试卷及答案(全国卷4)

2004年普通高等学校招生全国统一考试英语试卷及答案(全国卷3)

2004年普通高等学校招生全国统一考试英语试卷及答案(全国卷2)

2004年普通高等学校招生全国统一考试英语试卷及答案(辽宁卷)

2004年普通高等学校招生全国统一考试英语试卷及答案(江苏卷)

2004年普通高等学校招生全国统一考试英语试卷及答案(湖南卷)

2004年普通高等学校招生全国统一考试英语试卷及答案(湖北卷)

2004年普通高等学校招生全国统一考试英语试卷及答案(广东卷2)

2004年普通高等学校招生全国统一考试英语试卷及答案(广东卷)

2004年普通高等学校招生全国统一考试英语试卷及答案(福建卷)

2004年普通高等学校招生全国统一考试英语试卷及答案(北京卷)

2003年普通高等学校招生全国统一考试英语试卷

2002年普通高等学校招生全国统一考试英语试卷及答案

2000年普通高等学校招生全国统一考试英语试卷及答案

2001年普通高等学校招生全国统一考试英语试卷及答案

1997年普通高等学校招生全国统一考试英语试卷及答案

1998年普通高等学校招生全国统一考试英语试卷

1996年普通高等学校招生全国统一考试英语试卷及答案

1995年普通高等学校招生全国统一考试英语试卷及答案

1994年普通高等学校招生全国统一考试英语试卷及答案

style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">2019年福建高考数学试卷试题及答案解析(答案WORD版)

[解]

∵x^2f′(x)+2xf(x)=e^x/x,∴x^2f′(x)=e^x/x-2xf(x),

∴f′(x)=[e^x/x-2xf(x)]/x^2,

令f′(x)=0,得:e^x/x-2xf(x)=0,∴f(x)=e^x/(2x^2)。

令f(x)=e^x/(2x^2)中的x=2,得:f(2)=e^2/8,这说明,当f′(x)=0时,有:x=2。

∴当f(x)有极值时,就在x=2时取得。······①

由x^2f′(x)+2xf(x)=e^x/x,两边取导数,得:

2xf′(x)+x^2f″(x)+2f(x)+2xf′(x)=(xe^x-e^x)/x^2,

∴当f(x)有极值时,有:x^2f″(x)+e^x/x^2=(xe^x-e^x)/x^2,

∴f″(x)=(xe^x-2e^x)/x^4。

∴f″(2)=(2e^x-2e^2)/16=0,∴当x=2时,f(x)没有极值。······②

综合①、②,得:f(x)没有极值,∴本题的答案是D。

2022全国乙卷理科数学试卷及答案解析

福建高考数学试卷试题及答案解析1.关注基础,凸显平稳

命题充分关注数学基础知识、基本技能和基本思想方法的考查。文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,不仅考查分值占比高,而且有机融合了与之相关的知识、技能和思想方法,从而全面地检测了考生作为未来公民所必需的数学基础。

与此同时,命题立足中学教学的实际,在试卷的题型结构、赋分比例、难度要求以及试题难易梯度等方面,都严格地遵循了《考试说明》的相关规定,并科学地继承福建省已有高考数学命题的成功经验。

2.注重综合,适度创新

命题基于学科整体意义和考生后续学习需要,立足考试内容抽样的合理性和典型性,综合考查考生知识网络和方法体系的完备性,充分体现《考试说明》中的知识、能力和思想方法等要求。

命题追求稳中求新,适度考查将已有的知识与方法迁移到新情境中解决问题的能力。如理8(文16)以等差数列和等比数列的定义为载体综合考查推理论证能力、运算求解能力和创新意识;理10、文21(Ⅱ)(ⅱ)分别以导数的几何意义和正弦函数的最小正周期为载体综合考查推理论证能力、特殊与一般思想、有限与无限思想和数形结合思想;理15以纠错码和异或运算为载体综合考查了阅读理解、迁移运用的能力。

3.依托本质,突出能力

命题将考查综合运用数学的知识与方法解决问题的能力置于首要的位置,依托数学知识与方法的本质含义体现“知识立意”与“能力立意”,既全面又有所侧重地考查了《考试说明》要求的“五个能力”、“两个意识”和“七个思想”。如文12依托“三角函数线”侧重考查推理论证能力、抽象概括能力和数形结合思想;文18、理16分别依托“全网传播的融合指数”和“银行卡密码”侧重考查数据处理能力、应用意识和必然与或然思想;文20(Ⅲ)依托“两点之间线段最短”侧重考查了空间想象能力、推理论证能力和化归与转化思想;理10依托“导数的几何意义”侧重考查推理论证能力、特殊与一般思想和数形结合思想;理15依托“纠错码和异或运算”侧重考查推理论证能力和创新意识;文22、理20依托“导数的综合应用”侧重考查推理论证能力、运算求解能力、创新意识、数形结合思想和分类与整合思想。

4.强调应用,彰显选拔

命题强调数学的应用,既考查了数学知识与方法在学科内的应用。如文12、文15、文21、文22、理9、理14、理19、理20,也考查了数学知识在解决实际问题中的应用;如文13、文18、理4、理15、理16。

命题立足选拔的要求,淡化层次内的区分,强化层次间的区分,合理预设各种题型的难度梯度,力求各种题型内试题难度与题序同步增加,解答题每个小题也从易到难。如文20、21、22的第(Ⅰ)和(Ⅱ)问,理19、20的第(Ⅰ)问均较易入题,余下各问则着重考查考生的自然语言、图形语言和符号语言的转换和思考的能力。

此外,命题还关注解法多样性,藉此考查不同层次考生分析问题、解决问题的能力,彰显选拔功能。

十年寒窗标记的生活刻度难以磨灭,伏案苦读也没法用一句“俱往矣”概括,高考注定将是莘莘学子生活之书里浓墨重彩的章节。下面我为大家带来2022全国乙卷理科数学试卷及答案解析,希望对您有帮助,欢迎参考阅读!

2022全国乙卷理科数学试卷及答案解析

高考数学解题技巧

1、首先是精选题目,做到少而精。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2、其次是分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学 方法 的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

3、最后,题目 总结 。解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

高考数学知识点

第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三、数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:

第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

第二类我们所讲的动点问题;

第三类是弦长问题;

第四类是对称问题,这也是2008年高考已经考过的一点;

第五类重点问题,这类题时往往觉得有思路,但是没有答案,

当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七、押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高三数学 知识点总结:抽样方法

随机抽样

简介

(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;

优点:操作简便易行

缺点:总体过大不易实行

方法

(1)抽签法

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)

(2)随机数法

随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

分层抽样

简介

分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。

定义

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。

整群抽样

定义

什么是整群抽样

整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

优缺点

整群抽样的优点是实施方便、节省经费;

整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

实施步骤

先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:

一、确定分群的标注

二、总体(N)分成若干个互不重叠的部分,每个部分为一群。

三、据各样本量,确定应该抽取的群数。

四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。

例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

与分层抽样的区别

整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。

分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;

分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

系统抽样

定义

当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

步骤

一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:

(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;

(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;

(3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);

(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。

2022全国乙卷理科数学试题及答案解析相关 文章 :

★ 2022北京卷高考文科数学试题及答案解析

★ 2022全国甲卷文科数学卷试题及答案一览

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022高考甲卷数学真题试卷及答案

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国新高考2卷语文真题及答案解析

★ 2021年高考全国甲卷数学理科答案

★ 数学考试试卷及答案大全

★ 数学考试试卷及答案大全

★ 2017年中考数学试题附答案

文章标签: # 全国 # 考试 # 统一