您现在的位置是: 首页 > 教育政策 教育政策

2014数学高考解析几何,2014年数学高考全国卷

tamoadmin 2024-06-13 人已围观

简介1.天津数学高考各知识点所占比重2.跪求高等数学解析几何题目3.山西省文科数学哪些版块是必考内容4.高中数学解析几何怎么做?求技巧!!5.数学高考六道大题的题型6.函数,数列,集合占高考理科数学卷多少分?复合函数[编辑本段]有3个变量,y是u的函数,y=ψ(u),u是x的函数,u=f(x),往往能形成链:y通过中间变量u构成了x的函数: xuy,这要看定义域:设ψ的定义域为U 。 f的值域为U

1.天津数学高考各知识点所占比重

2.跪求高等数学解析几何题目

3.山西省文科数学哪些版块是必考内容

4.高中数学解析几何怎么做?求技巧!!

5.数学高考六道大题的题型

6.函数,数列,集合占高考理科数学卷多少分?

2014数学高考解析几何,2014年数学高考全国卷

复合函数

[编辑本段]

有3个变量,y是u的函数,y=ψ(u),u是x的函数,u=f(x),往往能形成链:y通过中间变量u构成了x的函数:

x→u→y,这要看定义域:设ψ的定义域为U 。 f的值域为U,当U*?U时,称f与ψ 构成一个复合函数 , 例如 y=lgsinx,x∈(0,π)。此时sinx>0 ,lgsinx有意义 。但如若规定x∈(-π,0),此时sinx<0 ,lgsinx无意义 ,就成不了复合函数。

反函数

[编辑本段]

就关系而言,一般是双向的 ,函数也如此 ,设y=f(x)为已知的函数,若对每个y∈Y,有唯一的x∈X,使f(x)=y,这是一个由y找x的过程 ,即x成了y的函数 ,记为x=f -1(y)。称f -1为f的反函数。习惯上用x表示自变量 ,故这个函数仍记为y=f -1(x) ,例如 y=sinx与y=arcsinx 互为反函数。在同一坐标系中,y=f(x)与y=f -1(x)的图形关于直线y=x对称。

隐函数

[编辑本段]

若能由函数方程 F(x,y)=0 确定y为x的函数y=f(x),即F(x,f(x))≡0,就称y是x的隐函数。

思考:隐函数是否为函数?因为在其变化的过程中并不满足“一对一”和“多对一”

多元函数

[编辑本段]

设点(x1,x2,…,xn) ∈G?Rn,U?R1 ,若对每一点(x1,x2,…,xn)∈G,由某规则f有唯一的 u∈U与之对应:f:G→U,u=f(x1,x2,…,xn),则称f为一个n元函数,G为定义域,U为值域。

基本初等函数及其图像 幂函数、指数函数、对数函数、三角函数、反三角函数称为基本初等函数。

①幂函数:y=xμ(μ≠0,μ为任意实数)定义域:μ为正整数时为(-∞,+∞),μ为负整数时是(-∞,0)∪(0,+∞);μ=(α为整数),当α是奇数时为( -∞,+∞),当α是偶数时为(0,+∞);μ=p/q,p,q互素,作为的复合函数进行讨论。略图如图2、图3。

②指数函数:y=ax(a>0 ,a≠1),定义成为( -∞,+∞),值域为(0 ,+∞),a>0 时是严格单调增加的函数( 即当x2>x1时,) ,0<a<1 时是严格单减函数。对任何a,图像均过点(0,1),注意y=ax和y=()x的图形关于y轴对称。如图4。

③对数函数:y=logax(a>0), 称a为底 , 定义域为(0,+∞),值域为(-∞,+∞) 。a>1 时是严格单调增加的,0<a<1时是严格单减的。不论a为何值,对数函数的图形均过点(1,0),对数函数与指数函数互为反函数 。如图5。

以10为底的对数称为常用对数 ,简记为lgx 。在科学技术中普遍使用的是以e为底的对数,即自然对数,记作lnx。

④三角函数:见表2。

正弦函数、余弦函数如图6,图7所示。

⑤反三角函数:见表3。双曲正、余弦如图8。

⑥双曲函数:双曲正弦(ex-e-x),双曲余弦?(ex+e-x),双曲正切(ex-e-x)/(ex+e-x) ,双曲余切( ex+e-x)/(ex-e-x)。

[编辑]补充

在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素(这只是一元函数f(x)=y的情况,请按英文原文把普遍定义给出,谢谢)。函数的概念对于数学和数量学的每一个分支来说都是最基础的。

术语函数,映射,对应,变换通常都是同一个意思。

二次函数

[编辑本段]

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的函数

二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 对于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)</CA>

交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线]

其中x1,2= -b±√b^2-4ac

注:在3种形式的互相转化中,有如下关系:

______

h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a

二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,

可以看出,二次函数的图像是一条抛物线。

抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )

当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

_______

Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{x|x≥4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

y=ax^2

y=a(x-h)^2

y=a(x-h)^2+k

y=ax^2+bx+c

顶点坐标

(0,0)

(h,0)

(h,k)

(-b/2a,sqrt[4ac-b^2]/4a)

对 称 轴

x=0

x=h

x=h

x=-b/2a

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点)

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

中考典例

1.(北京西城区)抛物线y=x2-2x+1的对称轴是( )

(A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2

考点:二次函数y=ax2+bx+c的对称轴.

评析:因为抛物线y=ax2+bx+c的对称轴方程是:y=-,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确.

另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴x=1,应选A.

2.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点:

甲:对称轴是直线x=4;

乙:与x轴两个交点的横坐标都是整数;

丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.

请你写出满足上述全部特点的一个二次函数解析式: .

考点:二次函数y=ax2+bx+c的求法

评析:设所求解析式为y=a(x-x1)(x-x2),且设x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2).

∵抛物线对称轴是直线x=4,

∴x2-4=4 - x1即:x1+ x2=8 ①

∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 3,

即:x2- x1= ②

①②两式相加减,可得:x2=4+,x1=4-

∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。

当ax1x2=±1时,x2=7,x1=1,a=±

当ax1x2=±3时,x2=5,x1=3,a=±

因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3)

即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3

说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为A(5,0),B(3,0)。再由题设条件求出a,看C是否整数。若是,则猜测得以验证,填上即可。

5.( 河北省)如图13-28所示,二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )

A、6 B、4 C、3 D、1

考点:二次函数y=ax2+bx+c的图象及性质的运用。

评析:由函数图象可知C点坐标为(0,3),再由x2-4x+3=0可得x1=1,x2=3所以A、B两点之间的距离为2。那么△ABC的面积为3,故应选C。

图13-28

6.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30)。y值越大,表示接受能力越强。

(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?

(2)第10分时,学生的接受能力是什么?

(3)第几分时,学生的接受能力最强?

考点:二次函数y=ax2+bx+c的性质。

评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)2+59.9,根据抛物线的性质可知开口向下,当x≤13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0≤x≤30,所以两个范围应为0≤x≤13;13≤x≤30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下:

解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9

所以,当0≤x≤13时,学生的接受能力逐步增强。

当13<x≤30时,学生的接受能力逐步下降。

(2)当x=10时,y=-0.1(10-13)2+59.9=59。

第10分时,学生的接受能力为59。

(3)x=13时,y取得最大值,

所以,在第13分时,学生的接受能力最强。

9.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:

(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;

(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);

(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为

:(55–40)×450=6750(元).

(2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:

y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元),

∴y与x的函数解析式为:y =–10x2+1400x–40000.

(3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,

即:x2–140x+4800=0,

解得:x1=60,x2=80.

当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:

40×400=16000(元);

当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:

40×200=8000(元);

由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元.

天津数学高考各知识点所占比重

1.设B(x1,y1)C(x2,y2)

过定点(-2,-4)作倾斜角为45°的直线l

则直线方程为 y=x-2 代入y2=2px

x^2-(2p+4)x+4=0

x1+x2=2p+4

x1*x2=4

AB BC AC成等比数列

则AB/BC=BC/AC

(x1+2)/(x2-x1)=(x2-x1)/(x2+2)

整理得

x1x2+2(x1+x2)+4=(x1+x2)^2-4x1x2

4+2(2p+4)+4=(2p+4)^2-16

解得p=1

所以抛物线的方程为

y^2=2x

2.设AB所在直线的斜率为K,A(XA,YA),B(XB,YB),P(XP,YP)

①XP=(XA+XB)/2

②YP=(YA+YB)/2

③XA^2+YA^2/4=1

④XB^2+YB^2/4=1

③-④化简,并有①,②代入可得XP/YP=-K/4(过程略)

⑤YP=-4*XP/K

又⑥YP=K*XP+1(P是AB中点,一定落在直线上)

⑤*(⑥-1)=-4*XP^2,化简得;

X^2/(1/16)+(Y-1/2)^2/(1/4)=1

当K=0时,P(0,1),等式成立

当K不存在时,P(0,0),等式成立

.........

N为P所在椭圆的中心,NP向量的模的最小值与最大值分别是该椭圆的半短轴与半长轴。

4.解:(1):由F(1,0)可知,所求椭圆的焦点在y轴上.

∴可设所求椭圆的方程为 y?/a?+x?/b?=1(a>b>0).

由题可知,c=1.

又∵e=1/2

∴有e?=c?/a?=1/a?=1/4

则,a?=4

∴b?=a?-c?=3.

即:所求椭圆方程为 y?/4+x?/3=1.

(2):如图(我发了一张图……)

设A(x1,y1) B(x2,y2).

∵F(0,1)∈AB

∴可设直线AB的方程为 y=kx+1.

可知k≠0 , 又可x1<0,x2>0.

∵向量AF:向量FB=1:2

∴有-2x1=x2 即 2x1+x2=0.

联立{y=kx+1, 4x?+3y?=1. 得,(3k?+4)x?+6kx-9=0.

由求根公式得, x1=[-3k-6√(k?+1)]/(3k?+4)

x2=[-3k+6√(k?+1)]/(3k?+4).

又∵2x1+x2=0

∴有[-6k-12√(k?+1)]/(3k?+4)+ [-3k+6√(k?+1)]/(3k?+4)=0.

化简得,5k?=4

∴k?=4/5.

解得,k=2√5/5 或 -2√5/5

即:所求直线方程为 2√5x-5y+5=0 或

2√5x+5y-5=0.

第5是2004年重庆高考题,本想给你发文档了,但加不上好友,自己搜吧

跪求高等数学解析几何题目

天津数学高考知识点所占比重:函数+导数 40分,数列 25分,解析几何 25分,三角15分,立体几何 20分。剩下的由其他知识点分,理科的函数导数分值会再下降一点,给统计概率排列组合让分。

1、立体几何

在高考所有题型中,立体几何是相对比较重要的一部分,这个题型的特点是,灵活度高,题目难度属于中等,解题方法多样化等。

所以同学们在复习这部分的时候,要学会建立坐标系使用向量法,找到特殊点,做辅助面和辅助线,利用立体几何本身的性质求证答案也是相对比较快的。

2、三角函数

三角函数是每年高考题型中大题必须会考察到比较简单的一个知识点,他的位置一般都是在17题或者18题,难度不会太大,主要是考察同学们对于三角函数的公式变换的掌握和运用能力。

3、圆锥曲线

除了函数外,圆锥曲线的难度也是很大的,但是圆锥曲线的选择填空题还是相对比较简单的,只要同学们作熟练了这类题型,得分还是相对比较容易的。

山西省文科数学哪些版块是必考内容

求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法. ●难点磁场 1.(★★★★★)双曲线 =1(b∈N)的两个焦点F1、F2,P为双曲线上一点,|OP|<5,|PF1|,|F1F2|,|PF2|成等比数列,则b2=_________. 2.(★★★★)如图,设圆P满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长比为3∶1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程. ●案例探究 [例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m. (1)建立坐标系并写出该双曲线方程. (2)求冷却塔的容积(精确到10 m2,塔壁厚度不计,π取3.14). 命题意图:本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力,属★★★★★级题目. 知识依托:待定系数法求曲线方程;点在曲线上,点的坐标适合方程;积分法求体积. 错解分析:建立恰当的坐标系是解决本题的关键,积分求容积是本题的重点. 技巧与方法:本题第一问是待定系数法求曲线方程,第二问是积分法求体积. 解:如图,建立直角坐标系xOy,使AA′在x轴上,AA′的中点为坐标原点O,CC′与BB′平行于x轴. 设双曲线方程为 =1(a>0,b>0),则a= AA′=7 又设B(11,y1),C(9,x2)因为点B、C在双曲线上,所以有 由题意,知y2-y1=20,由以上三式得:y1=-12,y2=8,b=7 故双曲线方程为 =1. (2)由双曲线方程,得x2= y2+49 设冷却塔的容积为V(m3),则V=π ,经计算,得V=4.25×103(m3) 答:冷却塔的容积为4.25×103m3. [例2]过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为 的椭圆C相交于A、B两点,直线y= x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程. 命题意图:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强,属★★★★★级题目. 知识依托:待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题. 错解分析:不能恰当地利用离心率设出方程是学生容易犯的错误.恰当地利用好对称问题是解决好本题的关键. 技巧与方法:本题是典型的求圆锥曲线方程的问题,解法一,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式.解法二,用韦达定理. 解法一:由e= ,得 ,从而a2=2b2,c=b. 设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上. 则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12-x22)+2(y12-y22)=0, 设AB中点为(x0,y0),则kAB=- ,又(x0,y0)在直线y= x上,y0= x0,于是- = -1,kAB=-1,设l的方程为y=-x+1. 右焦点(b,0)关于l的对称点设为(x′,y′), 由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2= . ∴所求椭圆C的方程为 =1,l的方程为y=-x+1. 解法二:由e= ,从而a2=2b2,c=b. 设椭圆C的方程为x2+2y2=2b2,l的方程为y=k(x-1), 将l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,则x1+x2= ,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=- . 直线l:y= x过AB的中点( ),则 ,解得k=0,或k= -1. 若k=0,则l的方程为y=0,焦点F(c,0)关于直线l的对称点就是F点本身,不能在椭圆C上,所以k=0舍去,从而k=-1,直线l的方程为y=-(x-1),即y=-x+1,以下同解法一. [例3]如图,已知△P1OP2的面积为 ,P为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P的离心率为 的双曲线方程. 命题意图:本题考查待定系数法求双曲线的方程以及综合运用所学知识分析问题、解决问题的能力,属★★★★★级题目. 知识依托:定比分点坐标公式;三角形的面积公式;以及点在曲线上,点的坐标适合方程. 错解分析:利用离心率恰当地找出双曲线的渐近线方程是本题的关键,正确地表示出 △P1OP2的面积是学生感到困难的. 技巧与方法:利用点P在曲线上和△P1OP2的面积建立关于参数a、b的两个方程,从而求出a、b的值. 解:以O为原点,∠P1OP2的角平分线为x轴建立如图所示的直角坐标系. 设双曲线方程为 =1(a>0,b>0) 由e2= ,得 . ∴两渐近线OP1、OP2方程分别为y= x和y=- x 设点P1(x1, x1),P2(x2,- x2)(x1>0,x2>0),则由点P分 所成的比λ= =2,得P点坐标为( ),又点P在双曲线 =1上,所以 =1, 即(x1+2x2)2-(x1-2x2)2=9a2,整理得8x1x2=9a2 ① 即x1x2= ② 由①、②得a2=4,b2=9 故双曲线方程为 =1. ●锦囊妙计 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. 定形——指的是二次曲线的焦点位置与对称轴的位置. 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0). 定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. ●歼灭难点训练 一、选择题 1.(★★★★)已知直线x+2y-3=0与圆x2+y2+x-6y+m=0相交于P、Q两点,O为坐标原点,若OP⊥OQ,则m等于( ) A.3 B.-3 C.1 D.-1 2.(★★★★)中心在原点,焦点在坐标为(0,±5 )的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为 ,则椭圆方程为( ) 二、填空题3.(★★★★)直线l的方程为y=x+3,在l上任取一点P,若过点P且以双曲线12x2-4y2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.4.(★★★★)已知圆过点P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为4 ,则该圆的方程为_________.三、解答题5.(★★★★★)已知椭圆的中心在坐标原点,焦点在x轴上,它的一个焦点为F,M是椭圆上的任意点,|MF|的最大值和最小值的几何平均数为2,椭圆上存在着以y=x为轴的对称点M1和M2,且|M1M2|= ,试求椭圆的方程.6.(★★★★)某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.7.(★★★★★)已知圆C1的方程为(x-2)2+(y-1)2= ,椭圆C2的方程为 =1(a>b>0),C2的离心率为 ,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程. 参考答案难点磁场1.解析:设F1(-c,0)、F2(c,0)、P(x,y),则|PF1|2+|PF2|2=2(|PO|2+|F1O|2)<2(52+c2),即|PF1|2+|PF2|2<50+2c2,又∵|PF1|2+|PF2|2=(|PF1|-|PF2|)2+2|PF1|·|PF2|,依双曲线定义,有|PF1|-|PF2|=4,依已知条件有|PF1|·|PF2|=|F1F2|2=4c2∴16+8c2<50+2c2,∴c2< ,又∵c2=4+b2< ,∴b2< ,∴b2=1.答案:12.解法一:设所求圆的圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|∵圆P截y轴所得弦长为2,∴r2=a2+1又由题设知圆P截x轴所得劣弧对的圆心角为90°,故弦长|AB|= r,故r2=2b2,从而有2b2-a2=1又∵点P(a,b)到直线x-2y=0的距离d= ,因此,5d2=|a-2b|2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取最小值,为此有 ,∵r2=2b2, ∴r2=2于是所求圆的方程为:(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2解法二:设所求圆P的方程为(x-a)2+(y-b)2=r2(r>0)设A(0,y1),B(0,y2)是圆与y轴的两个交点,则y1、y2是方程a2+(y-b)2=r2的两根,∴y1,2=b± 由条件①得|AB|=2,而|AB|=|y1-y2|,得r2-a2=1设点C(x1,0)、D(x2,0)为圆与x轴的两个交点,则x1,x2是方程(x-a)2+b2=r2的两个根,∴x1,2=a± 由条件②得|CD|= r,又由|CD|=|x2-x1|,得2b2=r2,故2b2=a2+1设圆心P(a,b)到直线x-2y=0的距离为d= ∴a-2b=± d,得a2=(2b± d)2=4b2±4 bd+5d2又∵a2=2b2-1,故有2b2±4 bd+5d2+1=0.把上式看作b的二次方程,∵方程有实根.∴Δ=8(5d2-1)≥0,得5d2≥1.∴dmin= ,将其代入2b2±4 bd+5d2+1=0,得2b2±4b+2=0,解得b=±1.从而r2=2b2=2,a=± =±1于是所求圆的方程为(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2歼灭难点训练一、1.解析:将直线方程变为x=3-2y,代入圆的方程x2+y2+x-6y+m=0,得(3-2y)2+y2+(3-2y)+m=0.整理得5y2-20y+12+m=0,设P(x1,y1)、Q(x2,y2)则y1y2= ,y1+y2=4.又∵P、Q在直线x=3-2y上,∴x1x2=(3-2y1)(3-2y2)=4y1y2-6(y1+y2)+9故y1y2+x1x2=5y1y2-6(y1+y2)+9=m-3=0,故m=3.答案:A2.解析:由题意,可设椭圆方程为: =1,且a2=50+b2,即方程为 =1.将直线3x-y-2=0代入,整理成关于x的二次方程.由x1+x2=1可求得b2=25,a2=75.答案:C二、3.解析:所求椭圆的焦点为F1(-1,0),F2(1,0),2a=|PF1|+|PF2|.欲使2a最小,只需在直线l上找一点P.使|PF1|+|PF2|最小,利用对称性可解.?答案: =14.解析:设所求圆的方程为(x-a)2+(y-b)2=r2则有 由此可写所求圆的方程.答案:x2+y2-2x-12=0或x2+y2-10x-8y+4=0三、5.解:|MF|max=a+c,|MF|min=a-c,则(a+c)(a-c)=a2-c2=b2,∴b2=4,设椭圆方程为 ①设过M1和M2的直线方程为y=-x+m ②将②代入①得:(4+a2)x2-2a2mx+a2m2-4a2=0 ③设M1(x1,y1)、M2(x2,y2),M1M2的中点为(x0,y0),则x0= (x1+x2)= ,y0=-x0+m= .代入y=x,得 ,由于a2>4,∴m=0,∴由③知x1+x2=0,x1x2=- ,又|M1M2|= ,代入x1+x2,x1x2可解a2=5,故所求椭圆方程为: =1.6.解:以拱顶为原点,水平线为x轴,建立坐标系,如图,由题意知,|AB|=20,|OM|=4,A、B坐标分别为(-10,-4)、(10,-4)设抛物线方程为x2=-2py,将A点坐标代入,得100=-2p×(-4),解得p=12.5,于是抛物线方程为x2=-25y.由题意知E点坐标为(2,-4),E′点横坐标也为2,将2代入得y=-0.16,从而|EE′|=(-0.16)-(-4)=3.84.故最长支柱长应为3.84米.7.解:由e= ,可设椭圆方程为 =1,又设A(x1,y1)、B(x2,y2),则x1+x2=4,y1+y2=2,又 =1,两式相减,得 =0,即(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0.化简得 =-1,故直线AB的方程为y=-x+3,代入椭圆方程得3x2-12x+18-2b2=0.有Δ=24b2-72>0,又|AB|= ,得 ,解得b2=8.故所求椭圆方程为 =1.

高中数学解析几何怎么做?求技巧!!

名师解读2015年山西省高考数学考试说明

《考试说明》解读

考查五种能力和两个意识

纵观近几年高考卷主要对数列、三角函数、统计与概率、立体几何、解析几何、函数与导数等主干知识进行了重点考察,同时覆盖了集合、复数、程序框图、三视图、二项式定理、线性规划、向量、常用逻辑用于、定积分等内容。考察内容全面。

老师介绍,五种能力包括:空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力;两种意识包括:应用意识、创新意识。

回顾2014年的数学试题,以能力立意,多角度、多层次地考察学生的数学能力,比如理科的第1、2、8、9、13、20题,文科的1、2、5、9、13、14题考察了学生的运算求解能力;理(文)科的6、18题考察了学生的空间想象能力;理科的第3、4、7、10、14、15、17题,文科的3、4、7、8、11、15、17题考察了学生的逻辑思想能力;理(文)科的19题考察了数据处理能力。

数学知识要求联系实际

近几年高考注重考察数学品质,淡化特殊技巧,强调通法。比如数列的客观题近几年不再考察性质了,而是考察了基本量的运算。每年的试卷都体现了对数形结合的思想,函数与方程的思想、分类与整合的思想的考察。

数学源于生活与实践,数学知识是解决实际问题的有力工具,考察学生应用数学工具和方法解决实际问题的能力。说明中也要求注重考生个性品质。主要指考生具有一定的数学视野,崇尚数学的理性精神,形成审慎的思想习惯,运用在考场上,要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题。

复习指导

第一:整体复习思路

对照考纲复习课本 吃透基本定义定理

高三复习,首先要扎进课本,扫除知识盲点。其次要走出课本,切忌只见树木不见森林。课本是复习之本,无本复习如无土栽培,什么收获也没有。知识点在课本里,高考只是整合课本知识,通过新的试题材料设计试题情境,有的试题还直接取材于课本。事实上,很多同学做错的题都是由于知识理解不准确导致的。

因此同学们要对照考纲复习课本,所有的考点逐个进行突破,对课本中的基本概念,基本公式,基本方法重点掌握。重在理解透定义、定理,背熟公式并会推导重要公式,以形成记忆。

按照“知识-题型-方法-思想”构建知识体系

根据不同需要,按照一定主题或线索,归纳整合各章知识,形成专题知识或专题材料,不能让课本中的知识“原生态”地存在于自己的头脑中。

按照“知识-题型-方法-思想”在头脑中构建,比如数列和三角属于比较有规律的知识,以数列举例,同学们要理解等差等比数列定义性质,背熟通项公式和求和公式(知识)。总结求通项的方法,求和的方法(题型、方法),那么在求通项的方法里重点体现了构造的思想。这样一章的内容就都印在了头脑中。

淡化技巧 牢记四种常用数学思想方法

在复习中应淡化特殊技巧的训练,重视数学思想和方法的作用。常用的数学思想方法有:(1)函数思想方法:根据问题的特点构建函数将所要研究的问题,转化为对构建函数的性质如定义域、值域、单调性、奇偶性、周期性、最值、对称性、范围和图像的交点个数等的研究;(2)方程思想方法:通过列方程(组)建立问题中的已知数和未知数的关系,通过解方程(组)实现化未知为已知,从而实现解决问题的目的;(3)数形结合的思想:它可以把抽象的数学语言与直观图形相对应,使复杂问题简单化,抽象问题具体化;(4)分类讨论的思想:此思想方法在解答题中越来越体现出其重要地位,在解题中应明确分类原则:标准要统一,不重不漏。

找准错题原因更重要 试卷关键字可做记号

错题本很多人都有,但是老师强调,更重要的是把做过的每套练习卷里错题导致的原因分析清楚,整理到错题本上进行滚动式复习。错题原因分为以下几种:一、知识理解的问题,一定要及时看书,把知识弄明白。二、方法思想的问题,我们在平时学习中一定要注意积累一些典型例题的典型解法,比如在解析几何里的动点问题我们可以考虑消参法,数列中的构造法,函数中的转移法等等,这都是很好的方法,在备考中通过掌握这一种方法就可以很顺利做一类题目,触类旁通,举一反三。三、计算失误,审题失误。在高考备考中,每次考试和做题中一定要有始有终,每次在做题时能一步一步算准确,才能提高我们运算的准确度,避免计算失误!为了避免审题失误,在考试时一定要先把题仔细阅读一遍,可以把试卷上关键字做上记号来提示你充分而准确地利用已知条件。

另外,高三期间有许多模拟考试,一是为了检查同学们的复习情况,二是为了模拟高考情景,锻炼考生的心理素质。有的同学题目难考不好,题目容易还是考不好,这就是心理素质不好的表现。其实,应想到我难人难,我易人易,沉着应战,一般能取得理想的成绩。

第二:分时间段复习思路

寒假期间:抓住笔记和一轮练习卷

现在同学们正处在寒假,由于放假前各校的一轮复习已经接近尾声,很多同学发现最初复习前面的集合、函数、三角函数、数列等已有所遗忘,其实主要是同学们在复习新的知识时,没有反复去复习前面的知识。

老师建议,在假期复习过程中,要抓好两样东西,笔记和一轮练习卷。每复习新的一章时,都要把前面复习过的章节都复习一遍,进行滚动式复习,这样才不会忘记旧知。

开学之后:综合复习和专题复习结合

开学之后,考生就进入了二轮专题复习,高考中一般有下面几个专题,即:函数与导函数专题;平面向量与三角函数专题;平面向量与解析几何专题;空间向量与立体几何专题;概率与统计专题;数列与不等式专题等,通过这几个版块的复习,目标在于提高学生解答高考解答题的能力。

此阶段学生不应沉迷于套卷演练,而应以典型例题为载体,以数学思想方法的灵活运用为线索,讲求解题策略,使自己在第一轮复习的基础上,数学素质得以明显提升。值得注意的是,同学们应该仔细阅读《考试大纲》,针对前期的复习来查漏补缺。

最后冲刺:吃透高考真题,温习课本定义定理

专题复习的同时我们应该结合综合练习, 要做题先要选题,高考真题一定是最好的练习题!因此建议一定要好好做一下最近十年以来的高考试卷,包括全国卷和地方卷,其次最好能找到近5年以来模拟考试题,在做题的过程中来巩固前面复习过的考点。

同时,最后的复习别忘了课本,特别是在考前应该再次翻开课本把里面公式和定理再看看,把典型的例题再做做,因为书上的例题毕竟比较简单,在考前做例题一是防止手生,便于高考正常发挥,一是有助于提高我们的自信心。

祝你成功!

数学高考六道大题的题型

我去年高考数学142分 可以很负责地告诉你 所谓技巧 就是基础之上的一种感觉

知识积累方面 公式你要记好 而且保证清楚每一个字母形式的几何意义 也就是说 你能把公式推出来最好 但是时间也不多了 如果你能记得好 至少基础分是不会少多少的 单选等小题来说 注重考察各种性质 比如圆锥曲线就多有准线问题 如果实在弄不懂题 先把准线关系找到 看看跟题目是不是有转换关系 再比如直线问题 这个多是结合性质的问题 你要清楚直线和各种曲线的关系 还有一种类型 解析几何会作为其他知识的背景出现 这要求你要分别考察主体 不要一看到解析几何就慌了 可能人家问的也不是这个内容 总之 要淡定 高考不会像模拟那样过分为难你

技巧方面 多体现在大题上 有一类题稍简单 只要把所有的条件都转换成式子 再顺着关系计算就能出结果 这类问题通常计算量很大 你要保证每天都有一定的计算量练习 为这个做准备 还有一类 应该是你想知道的大题的技巧性问题 我们冷静地想想 回首多年高考真题 真正的冷门问题有多少?形变的基础上是有一个核心的 这个就是解析几何的实质 不管什么问题 最重要的都是你的观察力 不要被以前做过的问题和传统思想局限了 凭你学科以外的观察思想 完全可以发现一些问题的 有的高考题的数字设置上都是有道理的 这个数字很可能代表一种特殊的简便算法 这个就是解析几何的个性之一 也极有可能是这个问题的突破口之一 当然 更多的问题出现在图形本身 所谓解析几何 是一种数形的结合 核心是转换的思想 作为对策 你要熟练地掌握各种数形转换类问题 举个最简单的例子 给出两个向量相乘等于0 那么你应该可以转换为二者有垂直关系 这是入手的阶段 也就是说你可以把题读懂 其次重要的思想 是代换问题 这个有多方渠道 比如坐标本身 比如向量 再比如参数方程 如果你对参数方程很掌握 那么我很推荐这个渠道 特别是涉及距离的问题 直线标准参数方程的参数t的几何意义就很好的体现出来了 根据题目的指示 往下代换 有时利用韦达定理去解释代换出的结果的关系 这个定理具有极强的限制作用 如果不熟悉 建议回头看看函数与方程的问题 然后 你就各种算~~

这个关头的boss问题 心理素质一定要硬!快高考了 解析几何是个比较复杂的问题 不建议再做模拟 要回到高考 模拟题压力意义比较大 但是我们要面对的还是高考 不要太突出知识对你做出这道题的决定意义 很多突破口 我们凭借观察就能得到 所以说 高考还是考能力的 不要慌 头脑清醒 计算快速而且准确 这个问题你就赢了一半了 万变不离其综 除去繁复的计算 真正的考察角度又有多少?要对自己有信心!要相信意识的能动作用~如果不相信奇迹 我们就去创造一个!祝你成功!

函数,数列,集合占高考理科数学卷多少分?

数学高考六道大题题型为:三角函数,概率,立体几何,函数,数列,解析几何。三角函数,概率,立体几何相对较容易。函数,数列,解析几何类经常做压轴题,相对较难。

一、三角函数题

注意归一公式、诱导公式的正确性。转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变,符号看象限)时,很容易因为粗心,导致错误。

二、数列题

1、证明一个数列是等差数列时,最后下结论时要写上以谁为首项,谁为公差的等差数列。

2、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系。

四、圆锥曲线问题

注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法。

相比2014课标全国I卷的数学试题,本次高考数学试题的难度变化不大,理科数学难度有所下降,考察内容方面注重基础的考察,知识覆盖全面,重点突出,传统高考中突出考察的“三角函数”、“数列与不等式”、“立体几何”、“概率统计”、“解析几何”、“函数与导数”六大板块依旧是考察的重点,且难度适当,依然体现了“以学生为本”“在基础中考察能力”的要求。与此同时,今年高考在考察方式上有所创新,理科数学第8题,第9题,第14题,第18题,第24题,文科数学第8题,第14题,第24题均运用了与历年课标全国卷考法有所区别的考法。

下面就部分较有特色的题目作个别分析。

理科数学第3题,文科数学第5题考察函数的奇偶性,非常的基础,回归课本,类似的题目在高考中出现过多次如2006年辽宁卷理科数学第2题,文科数学第3题等。

理科数学第8题,考察三角函数恒等变换,运用特殊值法令 α=π/3,β= π/6 可以秒杀。

理科数学第9题,将线性规划问题与简易逻辑结合在一起考察,难度不大但有新意。

理科数学第11题,文科数学第12题,考察函数的单调性,注意到函数图像的形状即可,考察方式非常传统,难度较历年选择压轴题有所下降。

理科数学第14题及文科数学第14题,考察逻辑推理,难度很小,在高考的考察方式中是一道新颖的小题。

理科数学第17题如我们所料在连续两年考察解三角形后考察了数列,题目形式较新,难度依然不大,通过作差可轻松得到答案。文科第17题考察错位相减法为数列的传统考法,注意计算准确即可。

理科数学第18题综合考察了统计与正态分布的知识,将正态分布的考察从选择填空转移到了解答题,但并没有增加难度,文科数学第18题综合考察了统计与统计案例,也是一道不错的考题。

在解析几何的考察上,文理科试卷都延续了减少计算量的趋势,且考查方式非常传统,理科数学第20题中出现的标志“三角形OPQ的面积”及文科数学第20题中出现的标志“三角形OPM的面积”几乎为高三考生平常训练中必做的题目类型。

理科数学第21题作为压轴题第一问考察基础的切线问题,第二问则是典型的不含参数恒成立问题的证明,在我们的课上曾经多次讲过对于不含参的恒成立问题,左边的最小值大于等于右边的最大值为一个有效的方法,本题经过变形将左边变为xlnx,再直接利用方法即可得到正确的证明。实际上本题脱胎自课本上xlnx的求导。

而同时,理科数学的压轴题与以下这道成题x∈(0,+∞)证明时, e^x lnx≥ 1-2e^x-1/x(e^x表示e的x次方)做简单的移项变形后可以说完全一样。这道成题我们曾在课堂上进行过讲解,题目也曾变形的出现在各类考试中,如本地的唐山一中2011年高三期中考试就曾用此题作为21题的第二问,进行过训练的高三考生应该可以拿下。

总体而言,2015年的高考数学课标全国I卷难度适当,考察方式有所创新,内容与部分题型更加注重回归基础及传统,对考生而言,严格以“课本”与“真题”为材料进行复习,才是正途。

文章标签: # 函数 # 方程 # x2