您现在的位置是: 首页 > 教育政策 教育政策

高考物理高频考点个数_高考物理高频考点

tamoadmin 2024-06-11 人已围观

简介1.高中物理必修二高频考点汇总2.高考物理的学习 有什么重点 要点 都考什么? 列个大纲~~~3.高考物理学史高频考点有些什么?4.高考物理考点细目表5.高考物理必考内容?今年湖南高考物理试题总体来说难度适中,属于中等难度。一、物理高频考点:1、运动的合成:从已知的分运动来求合运动,叫作运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。2、运动的分解:求一个已知运

1.高中物理必修二高频考点汇总

2.高考物理的学习 有什么重点 要点 都考什么? 列个大纲~~~

3.高考物理学史高频考点有些什么?

4.高考物理考点细目表

5.高考物理必考内容?

高考物理高频考点个数_高考物理高频考点

今年湖南高考物理试题总体来说难度适中,属于中等难度。

一、物理高频考点:

1、运动的合成:从已知的分运动来求合运动,叫作运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。

2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。

3、运动的性质和轨迹:物体运动的性质由加速度决定,物体运动的轨迹则由物体的速度和加速度的方向关系决定。

二、高考物理做题技巧:

1、物理讲的是“万物之理”,在我们身边到处都蕴含着丰富的、取之不尽用之不竭的物理知识。只要我们保持一颗好奇之心,注意观察各种自然现象和生活现象。

2、学会从“定义”去寻找错因,对于基本公式,规律,概念要特别重视。

3、在解决物理问题的过程中经常有不好的思维定势影响我们。这些是我们要力求克服的。而养成良好的思维定势则更为重要。

高考物理注意事项:

1、考生要寻找关键点来列方程。物理的大题部分基本是靠公式来得分的,列对了方程和公式就会有分得。

2、用补图法帮助审题。把物理科目的题意理解错了是一个较普遍的现象,建议同学们用补图的方法帮助审题,在头脑中建立活的物理情景。

3、特别注意把“关键词”“关键字眼”都勾画出来,这既可以增加审题的速度和准确度又可以避免审题出错。审题时一定要与题给的图像结合并且要在草纸上画出大致过程或状态;当具体的物理情景非常清晰,分析思路非常明确时,再在试卷上下笔。

4、物理解题的表达原则:让阅卷人满意,清晰整洁,讲解充分,要点一目了然。与给分无关的东西越少越好。

高中物理必修二高频考点汇总

伽利略

(1)通过理想实验推翻了亚里士多德“力是维持运动的原因”

的观点

(2)推翻了亚里士多德“重的物体比轻物体下落得快”的观点

开普勒:

提出开普勒行星运动三定律;

牛顿

(1)提出了三条运动定律。

(2)发现表万有引力定律;

卡文迪许:

利用扭秤装置比较准确地测出了引力常量

爱因斯坦

(1)提出的狭义相对论(经典力学不适用于微观粒子

和高速运动物体。)

(2)提出光子说,成功地解释了光电效应规律。

(3)提出质能方程E=mC?,为核能利用提出理论基础

库仑:

利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。

焦耳:

发现电流通过导体时产生热效应的规律,称为焦耳定律。

奥斯特:

电流可以使周围的磁针偏转的效应,称为电流的磁效应。

安培:

研究了电流在磁场中受力的规律

洛仑兹:

提出运动电荷产生了磁场和磁场对运动电荷有作用力

(洛仑兹力)的观点。

法拉第:

(1)发现了由磁场产生电流的条件和规律——电磁感应现象;

(2)提出电荷周围有电场,提出可用电场描述电场

楞次:

确定感应电流方向的定律--楞次定律。

亨利:

发现自感现象。

麦克斯韦:

预言了电磁波的存在,指出光是一种电磁波,为光的电磁

理论奠定了基础。

赫兹:

(1)用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。

(2)证实了电磁理的存在。

普朗克:

提出“能量量子假说”——解释物体热辐射(黑体辐射)

规律电磁波的发射和吸收不是连续的,而是一份一份的

17玻尔:提出了原子结构假说,成功地解释和预言了氢原子

的辐射电磁波谱。

德布罗意:

预言了实物粒子的波动性;

汤姆生:

利用阴极射线管发现了电子,说明原子可分,有复杂内部

结构,并提出原子的枣糕模型(葡萄干布丁模型)。

卢瑟福:

(1)进行了α粒子散射实验,并提出了原子的核式结构模型。

由实验结果估计原子核直径数量级为10-15 m。

(2)用α粒子轰击氮核,第一次实现了原子核的人工转变,

并发现了质子。

查德威克:

在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成。

贝克勒尔:

发现天然放射现象,使人们认识到原子核有复杂结构。

高考物理的学习 有什么重点 要点 都考什么? 列个大纲~~~

 有很多同学在复习物理必修二时效率不高,这是因为之前没有做过系统的学习总结,导致复习时找不到重难点。下面是由我为大家整理的“高中物理必修二高频考点汇总”,仅供参考,欢迎大家阅读本文。

 高中物理必修二高频考点

 万有引力定律及其应用

 1.万有引力定律:引力常量G=6.67×N?m2/kg2

 2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)

 3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)

 (1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)

 (2)重力=万有引力

 地面物体的重力加速度:mg=Gg=G≈9.8m/s2

 高空物体的重力加速度:mg=Gg=G<9.8m/s2

 4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的。

 由mg=mv2/R或由==7.9km/s

 5.开普勒三大定律

 6.利用万有引力定律计算天体质量

 7.通过万有引力定律和向心力公式计算环绕速度

 8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)

 高中物理必修二高频考点

 质点的运动----曲线运动 万有引力

 1)平抛运动

 1.水平方向速度V-=

 Vo 2.竖直方向速度Vy=gt

 3.水平方向位移S-=

 Vot 4.竖直方向位移(Sy)=gt^2/2

 5.运动时间t=(2Sy/g)1/2

 (通常又表示为(2h/g)1/2)

 6.合速度Vt=(V-^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2

 合速度方向与水平夹角β: tgβ=Vy/V-=gt/Vo

 7.合位移S=(S-^2+

 Sy^2)1/2 ,

 位移方向与水平夹角α: tgα=Sy/S-=gt/2Vo

 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

 2)匀速圆周运动

 1.线速度V=s/t=2πR/T

 2.角速度ω=Φ/t=2π/T=2πf

 3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R

 4.向心力F心=Mv^2/R=mω^2-R=m(2π/T)^2-R

 5.周期与频率T=1/f

 6.角速度与线速度的关系V=ωR

 7.角速度与转速的关系ω=2πn

 (此处频率与转速意义相同)

 8.主要物理量及单位:

 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)

 周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s

 角速度(ω):rad/s 向心加速度:m/s2

 注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

 3)万有引力

 1.开普勒第三定律T2/R3=K(=4π^2/GM)

 R:轨道半径 T :周期 K:常量(与行星质量无关)

 2.万有引力定律F=Gm1m2/r^2

 G=6.67×10^-11N?m^2/kg^2方向在它们的连线上

 3.天体上的重力和重力加速度GMm/R^2=mg

 g=GM/R^2 R:天体半径(m)

 4.卫星绕行速度、角速度、周期

 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2

 5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s

 V2=11.2Km/s V3=16.7Km/s

 6.地球同步卫星GMm/(R+h)^2=m-4π^2(R+h)/T^2

 h≈3.6 km h:距地球表面的高度

 注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的环绕速度和最小发射速度均为7.9Km/S。

 高一物理必修二高频考点

 曲线运动

 1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。

 2.物体做直线或曲线运动的条件:

 (已知当物体受到合外力F作用下,在F方向上便产生加速度a)

 (1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;

 (2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。

 3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。

 4.平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。

 分运动:

 (1)在水平方向上由于不受力,将做匀速直线运动;

 (2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。

 5.以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下.

 6.①水平分速度:②竖直分速度:③t秒末的合速度

 ④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示

 7.匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。

 8.描述匀速圆周运动快慢的物理量

 (1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上

 9.匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变

 (2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的

 (3)周期T,频率:f=1/T

 (4)线速度、角速度及周期之间的关系:

 10.向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。

 11.向心加速度:描述线速度变化快慢,方向与向心力的方向相同,

 12.注意:

 (1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。

 (2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。

 (3)做匀速圆周运动的物体受到的合外力就是向心力。

 13.离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。

 拓展阅读:高中物理的学习方法

 1、避免“个别错误”克服“共性错误”

 大部分学生犯错误都会有“共性的错误”和“个别的错误”。“个别的错误”必须得攻克,因为别人都会,而你不会,你就会被落得更远。“共性的错误”是出题人本来就知道大多数人都会共有的缺点,从而设下陷阱故意让你去钻,所以最好的方法就是在下笔之前、审题之时就识破其圈套。谁能提前做到这一点,谁就可以比别人先胜一筹。从而更能稳操胜券。

 2、理论联系实际

 物理是一门基于实验的学科,意味着物理学科大部分时候与生活紧密相连。善于观察生活中的常见现象,并能使用物理知识分析和提出解决方案,这是教育改革的一个重要方向,从近年的高考试题中也可以看到命题人对生活、社会、技术的关注以及知识考察的灵活性。

 3、掌握常用解题方法

 物理中体现极限思维的常见方法有极限法、微元法。微元法将研究过程或研究对象分解为众多细小的“微元”,只需分析这些“微元”,进行必要的数学方法或物理思想处理,便可将问题解决。极限思维法在进行某些物理过程分析时,具有独特作用,使问题化难为易,化繁为简,收到事半功倍的效果。

 4、学会分析物理过程

 一般说来,复杂的物理过程都是由若干个简单的“子过程”构成的。因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的“子过程”来研究。

 5、重视物理错题。

 物理基础差就没有必要大量刷题,对于每天出现的错题,优秀学霸总结的错题,课上老师重点讲解的错题,要及时的进行深入研究、并及时归类、总结!做到同样的错误不一错再错,你的物理成绩就能快速进步。

高考物理学史高频考点有些什么?

模块一:力学

专题一:直线运动

考点1:运动的描述

考点2:匀变速直线运动

考点3:自由落体运动

考点4:相遇与追及

专题二:相互作用

考点5:重力、弹力、摩擦力

考点6:力的合成和分解

考点7:共点力的平衡

专题三:牛顿运动定律

考点8:牛顿运动定律及其应用

考点9:超重和失重

专题四:曲线运动

考点10:运动的合成与分解、平抛运动

考点11:圆周运动

专题五:万有引力定律

考点12:万有引力定律

专题六:机械能

考点13:功与功率

考点14:动能和动能定理

考点15:机械能守恒定律

专题七:机械振动和机械波

考点16:机械振动

考点17:机械波

专题八:动量

考点18:冲量、动量和动量定理

考点19:动量守恒定律及其应用

考点20:碰撞

模块二:电磁学

专题九:电场

考点21:库伦定律

考点22:电场强度

考点23:电势

考点24:电容

知识点25:带电粒子在电场中的运动

专题十:恒定电流

考点26:电路的基本概念和规律

考点27:闭合电路欧姆定律

考点28:电路的分析和计算

专题十一:磁场

考点29:磁场及磁场对电流的作用

考点30:磁场对运动电荷的作用

考点31:带电粒子在复合场的运动

专题十二:电磁感应

考点32;电磁感应现象及楞次定律

考点33:法拉第电磁感应定律

考点34:电磁感应的有关规律的应用

专题十三:交变电流

考点35:交变电流

考点36:变压器及远距离输电

专题十四:电磁波

考点37:电磁场理论

考点38:电磁振荡

模块三:热学

考点39:分子动理论

考点40:气体的状态

考点41:热力学定律

考点42:能量守恒定律

模块四:光学

专题十五:光的折射定律

考点43:光的全反射、光导纤维

考点44:光的波动性与粒子性

模块五:原子物理学

考点45:原子结构

考点46:原子核

模块六:实验

考点47:力学实验

考点48:电磁学实验

高考物理考点细目表

新课标高考高中物理学史(新人教版)

必修部分:(必修1、必修2 )

一、力学:

1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);

2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;

3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)

6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它

原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

8、17世纪,德国天文学家开普勒提出开普勒三大定律;

9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);

俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。

10、1957年10月,苏联发射第一颗人造地球卫星;

1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。

11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。

选修部分:(选修3-1、3-2、3-3、3-4、3-5)

二、电磁学:(选修3-1、3-2)

13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。

14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

19、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。

20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

23、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。

24、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。

25、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。

26、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。

27、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。

28、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。

四、热学(3-3选做):

29、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。

30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。

31、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。

32、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。指出绝对零度(-273.15℃)是温度的下限。T=t+273.15K

热力学第三定律:热力学零度不可达到。

五、波动学(3-4选做):

33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。

34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。

35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。相互接近,f增大;相互远离,f减少

36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波

37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。

38、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

39、1800年,英国物理学家赫歇耳发现红外线;

1801年,德国物理学家里特发现紫外线;

1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。

六、光学(3-4选做):

40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。

41、1801年,英国物理学家托马斯?杨成功地观察到了光的干涉现象。

42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。

43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;

1887年,赫兹证实了电磁波的存在,光是一种电磁波

44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;

②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:。

46.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。

47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)

48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。

七、相对论(3-4选做):

49、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界);

50、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

51、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;

②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

52、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;

53、激光——被誉为20世纪的“世纪之光”;

八、波粒二象性(3-5选做):

54、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。

55、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)

56、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

57、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;

58、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。

十、原子物理学(3-5选做):

59、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。

60、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。

61、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

62、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。

63、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15m。

1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。

64、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。

65、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;

66、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。

天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。

67、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。

68、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,

并预言原子核内还有另一种粒子——中子。

69、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。

70、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。

71、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。63、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

72、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

73、1932年发现了正电子,1964年提出夸克模型;

粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;

轻子-不参与强相互作用的粒子,如:电子、中微子;

强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.

物理学史专题

★伽利略(意大利物理学家)

对物理学的贡献:

①发现摆的等时性

②物体下落过程中的运动情况与物体的质量无关

③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)

经典题目

伽利略根据实验证实了力是使物体运动的原因(错)

伽利略认为力是维持物体运动的原因(错)

伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)

伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对)

★胡克(英国物理学家)

对物理学的贡献:胡克定律

经典题目

胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)

★牛顿(英国物理学家)

对物理学的贡献

①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学

②经典力学的建立标志着近代自然科学的诞生

经典题目

牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对)

牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)

牛顿提出的万有引力定律奠定了天体力学的基础(对)

★卡文迪许

贡献:测量了万有引力常量

典型题目

牛顿第一次通过实验测出了万有引力常量(错)

卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对)

★亚里士多德(古希腊)

观点:

①重的物理下落得比轻的物体快

②力是维持物体运动的原因

经典题目

亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)

★开普勒(德国天文学家)

对物理学的贡献 开普勒三定律

经典题目

开普勒发现了万有引力定律和行星运动规律(错)

托勒密(古希腊科学家)

观点:发展和完善了地心说

哥白尼(波兰天文学家) 观点:日心说

第谷(丹麦天文学家) 贡献:测量天体的运动

威廉?赫歇耳(英国天文学家)

贡献:用望远镜发现了太阳系的第七颗行星——天王星

汤苞(美国天文学家)

贡献:用“计算、预测、观察和照相”的方法发现了太阳系第九颗行星——冥王星

泰勒斯(古希腊)

贡献:发现毛皮摩擦过的琥珀能吸引羽毛、头发等轻小物体

★库仑(法国物理学家)

贡献:发现了库仑定律——标志着电学的研究从定性走向定量

典型题目

库仑总结并确认了真空中两个静止点电荷之间的相互作用(对)

库仑发现了电流的磁效应(错)

富兰克林(美国物理学家)

贡献:

①对当时的电学知识(如电的产生、转移、感应、存储等)作了比较系统的整理

②统一了天电和地电

密立根 贡献:密立根油滴实验——测定元电荷

昂纳斯(荷兰物理学家) 发现超导

欧姆: 贡献:欧姆定律(部分电路、闭合电路)

★奥斯特(丹麦物理学家)

电流的磁效应(电流能够产生磁场)

经典题目

奥斯特最早发现电流周围存在磁场(对)

法拉第根据小磁针在通电导线周围的偏转而发现了电流的磁效应(错)

★法拉第

贡献:

①用电场线的方法表示电场

②发现了电磁感应现象

③发现了法拉第电磁感应定律(E=n△Φ/△t)

经典题目

奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象(对)

法拉第发现了磁场产生电流的条件和规律(对)

奥斯特对电磁感应现象的研究,将人类带入了电气化时代(错)

法拉第发现了磁生电的方法和规律(对)

★安培(法国物理学家)

①磁场对电流可以产生作用力(安培力),并且总结出了这一作用力遵循的规律

②安培分子电流假说

经典题目

安培最早发现了磁场能对电流产生作用(对)

安培提出了磁场对运动电荷的作用力公式(错)

狄拉克(英国物理学家)

贡献:预言磁单极必定存在(至今都没有发现)

★洛伦兹(荷兰物理学家)

贡献:1895年发表了磁场对运动电荷的作用力公式(洛伦兹力)

阿斯顿

贡献:

①发现了质谱仪 ②发现非放射性元素的同位素

劳伦斯(美国) 发现了回旋加速器

★楞次 发现了楞次定律(判断感应电流的方向)

★汤姆生(英国物理学家)

贡献:

①发现了电子(揭示了原子具有复杂的结构)

②建立了原子的模型——枣糕模型

经典题目

汤姆生通过对阴极射线的研究发现了电子(对)

★卢瑟福(英国物理学家)

指导助手进行了α粒子散射实验(记住实验现象)

提出了原子的核式结构(记住内容)

发现了质子

经典题目

汤姆生提出原子的核式结构学说,后来卢瑟福用 粒子散射实验给予了验证(错)

卢瑟福的原子核式结构学说成功地解释了氢原子的发光现象(错)

卢瑟福的a粒子散射实验可以估算原子核的大小(对)

卢瑟福通过对α粒子散射实验的研究,揭示了原子核的组成(对)

★波尔(丹麦物理学家)

贡献:波尔原子模型(很好的解释了氢原子光谱)

经典题目

玻尔把普朗克的量子理论运用于原子系统上,成功解释了氢原子光谱规律(对)

玻尔理论是依据a粒子散射实验分析得出的(错)

玻尔氢原子能级理论的局限性是保留了过多的经典物理理论(对)

★贝克勒尔(法国物理学家)

发现天然放射现象(揭示了原子核具有复杂结构)

经典题目

天然放射性是贝克勒尔最先发现的(对)

贝克勒尔通过对天然放射现象的研究发现了原子的核式结构(错)

★伦琴 贡献:发现了伦琴射线(X射线)

★查德威克 贡献:发现了中子

★约里奥?居里和伊丽芙?居里夫妇

①发现了放射性同位素

②发现了正电子

经典题目

居里夫妇用α粒子轰击铝箔时发现电子(错)

约里奥?居里夫妇用α粒子轰击铝箔时发现正电子(对)

★普朗克 贡献:量子论

★爱因斯坦

贡献:

①用光子说解释了光电效应

②相对论

经典题目

爱因斯坦提出了量子理论,普朗克提出了光子说(错)

爱因斯坦用光子说很好地解释了光电效应(对)

是爱因斯坦发现了光电效应现象,普朗克为了解释光电效应的规律,提出了光子说(错)

爱因斯坦创立了举世瞩目的相对论,为人类利用核能奠定了理论基础;普朗克提出了光子说,深刻地揭示了微观世界的不连续现象(错)

★麦克斯韦

贡献:

①建立了完整的电磁理论

②预言了电磁波的存在,并且认为光是一种电磁波(赫兹通过实验证实电磁波的存在)

经典题目

普朗克在前人研究电磁感应的基础上建立了完整的电磁理论(对)

麦克斯韦从理论上预言了电磁波的存在,赫兹用实验方法给予了证实(对)

麦克斯韦通过实验证实了电磁波的存在(错)

附高中物理学史(旧人教版)

1、1638年,意大利物理学家伽利略

①论证重物体不会比轻物体下落得快;

②伽利略的通过斜面理想实验和牛顿逻辑推理得出牛顿第一定律;伽利略通过斜面实验得出自由落体运动位移与时间的平方成正比

③伽利略发现摆的等时性(周期只与摆的长度有关),惠更斯根据这个原理制成历史上第一座摆钟

2、英国科学家牛顿

1683年,提出了三条运动定律。

1687年,发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量;

3、17世纪,伽利略理想实验法指出:

水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;

4、20爱因斯坦提出的狭义相对论

经典力学不适用于微观粒子和高速运动物体。

5、17世纪德国天文学家开普勒

提出开普勒三定律;

6、1785年法国物理学家库仑

利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。

7、1752年,富兰克林

(1)过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。

(2)命名正负电荷

(3)1751年富兰克林发现莱顿瓶放电可使缝衣针磁化

8、1826年德国物理学家欧姆(1787-1854)

通过实验得出欧姆定律。

9、1911年荷兰科学家昂尼斯

大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

10、1841~1842年 焦耳和楞次

先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。

11、1820年,丹麦物理学家奥斯特

电流可以使周围的磁针偏转的效应,称为电流的磁效应。

12、荷兰物理学家洛仑兹

提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

13、1831年英国物理学家法拉第

(1)发现了由磁场产生电流的条件和规律——电磁感应现象;

(2)提出电荷周围有电场,并用简洁方法描述了电场—电场线。

14、1834年,楞次

确定感应电流方向的定律。

15、1832年,亨利

发现自感现象。

16、1864年英国物理学家麦克斯韦

预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

17、1887年德国物理学家赫兹

用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。

18、公元前468-前376,我国的墨翟

在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。

19、1621年荷兰数学家斯涅耳

入射角与折射角之间的规律——折射定律。

20、关于光的本质有两种学说:

一种是牛顿主张的微粒说:认为光是光源发出的一种物质微粒;

一种是荷兰物理学家惠更斯提出的波动说:认为光是在空间传播的某种波。

21、1801年,英国物理学家托马斯?杨

观察到了光的干涉现象

22、1818年,法国科学家泊松

观察到光的圆板衍射——泊松亮斑。

23、1895年,德国物理学家伦琴

发现X射线(伦琴射线)。

24、1900年,德国物理学家普朗克

解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;

25、1905年爱因斯坦

提出光子说,成功地解释了光电效应规律。

26、1913年,丹麦物理学家玻尔

提出了原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱。

27、1924年,法国物理学家德布罗意

预言了实物粒子的波动性;

28、1897年,汤姆生

利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。

29、1909年-1911年,英国物理学家卢瑟福

进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。

30、1896年,法国物理学家贝克勒尔

发现天然放射现象,说明原子核也有复杂的内部结构。

31、1919年,卢瑟福

用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。

32、1932年查德威克

在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成。

33、1932年发现了正电子,1964年提出夸克模型;

粒子分为三大类:

媒介子,传递各种相互作用的粒子如光子;

轻子,不参与强相互作用的粒子如电子、中微子;

强子,参与强相互作用的粒子如质子、中子;强子由更基本的粒子夸克组成,夸克带电量可能为元电荷的 或 。

34.密立根

测定电子的电量

35.瓦特在1782年研制成功了具有连杆、飞轮和离心调速器的双向蒸汽机。

36.人类对天体的认识从“地心说—托勒密”到“日心说—哥白尼”到“开普勒定律”再到“牛顿的万有引力定律”。 直到1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量万有引力定律显示出强大的威力。

高考物理必考内容?

高考物理考点细目表如下:

匀变速直线运动公式与图像,共点力的平衡,牛顿运动定律及其应用考查最频繁。在难度上也是不是有难度较大的题出现,所以以上三个知识点也必将是2020高考的重点

物理必修二的高频考点主要集中在:抛体运动、动能定理、功能关系与能量守恒、万有引力定律应用这几个知识点上,这几个知识点几乎每年都要涉及到,所以必修二重点掌握好这几个知识点,在高考中就能做到有的放矢。

物理选修3-1虽然相对知识点比较多,但是经常考到的知识点却比较集中,主要有:电场强度、电势能电势、带电粒子在电场中的运动、带电粒子在磁场中的运动、安培力、洛伦兹力等。

其中带电粒子在电场、磁场中的运动这两个知识点是重中之重,近三年都曾在高考试卷中出现过。

物理选修3-2本身知识点相对较少,高考考到的知识点主要集中在电磁感应,包括:电磁感应现象、法拉第电磁感应定律、楞次定律,而且是考试的重点,所以物理选修3-2的复习重点一定就是电磁感应问题了。

物理实验在高考中一般是两个填空题研究匀变速直线运动、验证牛顿运动定律、测定金属电阻率和练习使用多用电表出现的频率比较高。作为重点复习。

在选考课本中,看上去知识点比较多,但是在考试中,考到的知识点却相当集中,物理选修3-3中气体定律、热力学第一定律;选修3-4中简谐振动、机械波、光的折射和折射率;选修3-5中动量动量定理动量守恒定律都是常考知识点。在复习中只要把这些常考知识点掌握牢固,对于做选做题问题就不大。

高中物理公式、规律汇编表 一、力学公式 1、 胡克定律: F = Kx (x为伸长量或压缩量,K为倔强系数,只与弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g随高度、纬度、地质结构而变化) 3 、求F 、 的合力的公式: F= 合力的方向与F1成?8?4角: tg?8?4= 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ?8?7 F1-F2 ?8?7 ?8?0 F?8?0 F1 +F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ?8?6F=0 或?8?6Fx=0 ?8?6Fy=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= ?8?6N 说明 : a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G b、 ?8?6为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O?8?0 f静?8?0 fm (fm为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b、摩擦力可以作正功,也可以作负功,还可以不作功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= ?8?1Vg (注意单位) 7、 万有引力: F=G (1). 适用条件 (2) .G为万有引力恒量 (3) .在天体上的应用:(M一天体质量 R一天体半径 g一天体表面重力 加速度) a 、万有引力=向心力 G b、在地球表面附近,重力=万有引力 mg = G g = G c、 第一宇宙速度 mg = m V= 8、库仑力:F=K (适用条件) 9、 电场力:F=qE (F 与电场强度的方向可以相同,也可以相反) 10、磁场力: (1) 洛仑兹力:磁场对运动电荷的作用力。 公式:f=BqV (B?8?1V) 方向一左手定 (2) 安培力 : 磁场对电流的作用力。 公式:F= BIL (B?8?1I) 方向一左手定则 11、 牛顿第二定律: F合 = ma 或者 ?8?6Fx = m ax ?8?6Fy = m ay 理解:(1)矢量性 (2)瞬时性 (3)独立性 (4) 同体性 (5)同系性 (6)同单位制 12、匀变速直线运动: 基本规律: Vt = V0 + a t S = vo t + a t2几个重要推论: (1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值) (2) A B段中间时刻的即时速度: Vt/ 2 = = (3) AB段位移中点的即时速度: Vs/2 = 匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 <Vs/2 (4) 初速为零的匀加速直线运动,在1s 、2s、3s?0?1……ns内的位移之比为12:22:32 ……n2; 在第1s 内、第 2s内、第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内、第2米内、第3米内……第n米内的时间之比为1: : ……( (5) 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:?8?5s = aT2 (a一匀变速直线运动的加速度 T一每个时间间隔的时间) 13、 竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO、加速度为?8?2g的匀减速直线运动。 (1) 上升最大高度: H = (2) 上升的时间: t= (3) 上升、下落经过同一位置时的加速度相同,而速度等值反向 (4) 上升、下落经过同一段位移的时间相等。 从抛出到落回原位置的时间:t = (6) 适用全过程的公式: S = Vo t 一 g t2 Vt = Vo一g t Vt2 一Vo2 = 一2 gS ( S、Vt的正、负号的理解) 14、匀速圆周运动公式 线速度: V= ?8?6R=2 f R= 角速度:?8?6= 向心加速度:a = 2 f2 R 向心力: F= ma = m 2 R= m m4 n2 R 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。 (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。 (3) 氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。 15 直线运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动 水平分运动: 水平位移: x= vo t 水平分速度:vx = vo 竖直分运动: 竖直位移: y = g t2 竖直分速度:vy= g t tg?8?0 = Vy = Votg?8?0 Vo =Vyctg?8?0 V = Vo = Vcos?8?0 Vy = Vsin?8?0 y Vo 在Vo、Vy、V、X、y、t、?8?0七个物理量中,如果 x ) ?8?0 vo 已知其中任意两个,可根据以上公式求出其它五个物理量。 vy v 16 动量和冲量: 动量: P = mV 冲量:I = F t 17 动量定理: 物体所受合外力的冲量等于它的动量的变化。 公式: F合t = mv’ 一mv (解题时受力分析和正方向的规定是关键) 18 动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。 (研究对象:相互作用的两个物体或多个物体) 公式:m1v1 + m2v2 = m1 v1‘+ m2v2’或?8?5p1 =一?8?5p2 或?8?5p1 +?8?5p2=O 适用条件: (1)系统不受外力作用。 (2)系统受外力作用,但合外力为零。 (3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。 (4)系统在某一个方向的合外力为零,在这个方向的动量守恒。 18 功 : W = Fs cos?8?0 (适用于恒力的功的计算) (1) 理解正功、零功、负功 (2) 功是能量转化的量度 重力的功------量度------重力势能的变化 电场力的功-----量度------电势能的变化 分子力的功-----量度------分子势能的变化 合外力的功------量度-------动能的变化 19 动能和势能: 动能: Ek = 重力势能:Ep = mgh (与零势能面的选择有关) 20 动能定理:外力对物体所做的总功等于物体动能的变化(增量)。 公式: W合= ?8?5Ek = Ek2 一Ek1 = 21 机械能守恒定律:机械能 = 动能+重力势能+弹性势能 条件:系统只有内部的重力或弹力做功. 公式: mgh1 + 或者 ?8?5Ep减 = ?8?5Ek增 22 功率: P = (在t时间内力对物体做功的平均功率) P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比) 23 简谐振动: 回复力: F = 一KX 加速度:a = 一 单摆周期公式: T= 2 (与摆球质量、振幅无关) ?8?9弹簧振子周期公式:T= 2 (与振子质量有关、与振幅无关) 24、 波长、波速、频率的关系: V=?8?5 f = (适用于一切波) 二、 热学: 1、热力学第一定律: W + Q = ?8?5E 符号法则: 体积增大,气体对外做功,W为“一”;体积减小,外界对气体做功,W为“+”。 气体从外界吸热,Q为“+”;气体对外界放热,Q为“-”。 温度升高,内能增量?8?5E是取“+”;温度降低,内能减少,?8?5E取“一”。 三种特殊情况: (1) 等温变化 ?8?5E=0, 即 W+Q=0 (2) 绝热膨胀或压缩:Q=0即 W=?8?5E (3)等容变化:W=0 ,Q=?8?5E 2 理想气体状态方程: (1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。 (2) 公式: 恒量 (3) 含密度式: ?8?93、 克拉白龙方程: PV=n RT= (R为普适气体恒量,n为摩尔数) 4 、 理想气体三个实验定律: (1) 玻马—定律:m一定,T不变 P1V1 = P2V2 或 PV = 恒量 (2)查里定律: m一定,V不变 或 或 Pt = P0 (1+ (3) 盖?6?1吕萨克定律:m一定,T不变 V0 (1+ 注意:计算时公式两边T必须统一为热力学单位,其它两边单位相同即可。 三、电磁学 (一)、直流电路 1、电流强度的定义: I = (I=nesv) 2、电阻定律:( 只与导体材料性质和温度有关,与导体横截面积和长度无关) 3、电阻串联、并联: 串联:R=R1+R2+R3 +……+Rn 并联: 两个电阻并联: R= 4、欧姆定律: (1)、部分电路欧姆定律: U=IR (2)、闭合电路欧姆定律:I = ε r 路端电压: U = ?8?8 -I r= IR R 输出功率: = Iε-I r = 电源热功率: 电源效率: = =RR+r (5).电功和电功率: 电功:W=IUt 电热:Q= 电功率 :P=IU 对于纯电阻电路: W=IUt= P=IU =( ) 对于非纯电阻电路: W=IUt ?8?9 P=IU?8?9 (6) 电池组的串联每节电池电动势为 `内阻为 ,n节电池串联时 电动势:ε=n 内阻:r=n (7)、伏安法测电阻: (二)电场和磁场 1、库仑定律: ,其中,Q1、Q2表示两个点电荷的电量,r表示它们间的距离,k叫做静电力常量,k=9.0×109Nm2/C2。 (适用条件:真空中两个静止点电荷) 2、电场强度: (1)定义是: F为检验电荷在电场中某点所受电场力,q为检验电荷。单位牛/库伦(N/C),方向,与正电荷所受电场力方向相同。描述电场具有力的性质。 注意:E与q和F均无关,只决定于电场本身的性质。 (适用条件:普遍适用) (2)点电荷场强公式: k为静电力常量,k=9.0×109Nm2/C2,Q为场源电荷(该电场就是由Q激发的),r为场点到Q距离。 (适用条件:真空中静止点电荷) (3)匀强电场中场强和电势差的关系式: 其中,U为匀强电场中两点间的电势差,d为这两点在平行电场线方向上的距离。 3、电势差: 为电荷q在电场中从A点移到B点电场力所做的功。单位:伏特(V),标量。数值与电势零点的选取无关,与q及 均无关,描述电场具有能的性质。 4、电场力的功: 5、电势: 为电荷q在电场中从A点移到参考点电场力所做的功。数值与电势零点的选取有关,但与q及 均无关,描述电场具有能的性质。 6、电容:(1)定义式: C与Q、U无关,描述电容器容纳电荷的本领。单位,法拉(F),1F=106μF=1012pF (2)决定式: 7、磁感应强度: ( ) 描述磁场的强弱和方向,与F、I、L无关。当I // L时,F=0,但B≠0,方向:垂直于I、L所在的平面。 8、带电粒子在匀强磁场中做匀速圆周运动: 轨迹半径: 运动的周期: (三)电磁感应和交变电流 1、磁通量: (条件,B⊥S)单位:韦伯(Wb) 2、法拉第电磁感应定律: 导线切割磁感线产生的感应电动势: (条件,B、L、v两两垂直) 3、正弦交流电:(从中性面开始计时) (1)电动势瞬时值: ,其中,最大值 (2)电流瞬时值: ,其中,最大值 (条件,纯电阻电路) (3)电压瞬时值: ,其中,最大值 , 是该段电路的电阻。 (4)有效值和最大值的关系: (只适用于正弦交流电) 4、理想变压器: (注意:U1、U2为线圈两端电压) (条件,原、副线圈各一个) 5、电磁振荡:周期 , 四、光学 1、折射率: ( ,真空中的入射角; ,介质中的折射角) ( ,真空中光速。 ,介质中光速) 2、全反射临界角: (条件,光线从光密介质射向光疏介质;入射角大于临界角) 3、波长、频率、和波速的关系: 4、光子能量: ( ,普朗克常量, =6.63×1034JS, ,光的频率) 5、爱因斯坦光电方程: 极限频率: 五、原子物理学 1、玻尔的原子理论: 2、氢原子能级公式: 氢原子轨道半径公式: (n=1,2,3,……) 3、核反应方程: 衰变: (α衰变) (β衰变) (人工核反应;发现质子) , (获得人工放射性同位素) (发现中子) (裂变) (聚变) 4、爱因斯坦质能方程: 核能: ( ,质量亏损)详情可查看

文章标签: # 运动 # 发现 # 物体