您现在的位置是: 首页 > 教育新闻 教育新闻

高考重点物理公式大题-高考重点物理公式

tamoadmin 2024-09-06 人已围观

简介1.高考物理公式解析总结2.高考常用的物理公式是那些~~!3.物理高考必考公式4.高考物理重要 常用公式有哪些5.高中物理公式(要全点)6.高考物理常用公式高考物理公式解析总结 高中物理与九年义务 教育 物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,下面我给大家整理了关于高考物理公式解析 总结 ,欢迎大家阅读! 交变电流公式总结 1.电压瞬时值e=

1.高考物理公式解析总结

2.高考常用的物理公式是那些~~!

3.物理高考必考公式

4.高考物理重要 常用公式有哪些

5.高中物理公式(要全点)

6.高考物理常用公式

高考物理公式解析总结

高考重点物理公式大题-高考重点物理公式

高中物理与九年义务 教育 物理或者科学课程相衔接,主旨在于进一步提高同学们的科学素养,与实际生活联系紧密,下面我给大家整理了关于高考物理公式解析 总结 ,欢迎大家阅读!

交变电流公式总结

1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

4.理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

5.在远距离输电中,用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中 性面电流方向就改变;

(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;

电磁振荡和电磁波公式总结

1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}

2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}

注:(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;

(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;

磁场公式总结

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A m

2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,

洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

高考 物理 学习 方法

爱因斯坦有个成功的公式:A=X+Y+Z。A代表成功,X代表艰苦劳动,Y代表正确方法,Z代表少说废话。这个公式指明事业成功的三要素。对于学业来说,成功也有三要素:学习成功=心理素质十学习方法十智能素质

(1)学习的动机。学习需要动机。由于学生的个人需要而产生的学习内驱力很重要。有人有旺盛的求知欲,对学习有浓厚的兴趣,正是如此,如升学、就业、兴趣、 爱好 、荣誉、地位、求知欲、事业、前途等都是。我们要努力强化学习的动机,如树立远大理想;参加各种竞赛,挑战强者,激起学习欲望;看到自己学习成果而受鼓励,从而增强自信,经受挫折,要有不甘失败和屈辱的精神。

(2)学习的兴趣。浓厚的学习兴趣与效率有密切关系,可以从好奇心和求知欲中激发学习兴趣。如物理的实验,化学的变化等,容易引起人的好奇和求知;培养对各门功课的兴趣。往往是刻苦学习后,才发现知识的奥秘和用途,才提高学习成绩,所以一定要钻进书海去;把知识应用于实践,激发兴趣,用自己所学的知识分析解决出问题时,那种成功感易激发学习兴趣。

(3)学习的情感、意志和态度。将积极的情感同学习联系起来,防止消极情绪的滋生,可以促进学习。善于控制自己,是学习意志力培养的关键。控制和约束自己的行动,控制不需要的想法和情绪,可以使思想集中到学习上来,这点是尤为重要的。

高考物理公式解析总结相关 文章 :

★ 高考物理公式总结归纳

★ 高中物理公式总结归纳

★ 2020高考物理公式必背大汇总

★ 高考物理公式小知识点

★ 高一物理公式大全总结

★ 高考物理必考知识点及公式总结

★ 高考必备物理公式

★ 高中物理知识点总结与公式归纳

★ 高考物理知识点公式总结电场与磁场

★ 高考物理必备公式大全

高考常用的物理公式是那些~~!

高中物理复习和高中物理公式大全

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解)

1)常见的力

1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力)

1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F?{负号表示方向相反,F、F?各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

五、振动和波(机械振动与机械振动的传播)

1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

3.受迫振动频率特点:f=f驱动力

4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

5.机械波、横波、纵波〔见第二册P2〕

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

注:

(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)干涉与衍射是波特有的;

(5)振动图象与波动图象;

(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

六、冲量与动量(物体的受力与动量的变化)

1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

5.动量守恒定律:p前总=p后总或p=p’?也可以是m1v1+m2v2=m1v1?+m2v2?

6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}

7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1?=(m1-m2)v1/(m1+m2) v2?=2m1v1/(m1+m2)

10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11.m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对相对长木块的位移}

注:

(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);

(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;

(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。

七、功和能(功是能量转化的量度)

1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}

7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14.动能定理(对物体做正功,物体的动能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

注:

(1)功率大小表示做功快慢,做功多少表示能量转化多少;

(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

八、分子动理论、能量守恒定律

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力

(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

(3)r>r0,f引>f斥,F分子力表现为引力

(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

6.热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

注:

(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

九、气体的性质 1.气体的状

九、气体的性质

1.气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

注:

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

十、电场

1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

常见电容器〔见第二册P111〕

14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

注:

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

(3)常见电场的电场线分布要求熟记〔见图[第二册P98];

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

(6)电容单位换算:1F=106μF=1012PF;

(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

十一、恒定电流

1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

电流关系 I总=I1=I2=I3 I并=I1+I2+I3+

电压关系 U总=U1+U2+U3+ U总=U1=U2=U3

功率分配 总=P1+P2+P3+ 总=P1+P2+P3+

10.欧姆表测电阻

(1)电路组成 (2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻

电流表内接法: 电流表外接法:

电压表示数:U=UR+UA 电流表示数:I=IR+IV

Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真

选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<<RV [或Rx<(RARV)1/2]

12.滑动变阻器在电路中的限流接法与分压接法

限流接法

物理高考必考公式

物理高考必考公式如下:

高中物理知识点总结一:直线运动

理解口诀:

1、物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2、运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g。竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。

高中物理知识点总结二:曲线运动、万有引力

理解口诀:

1、运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。

2、圆周运动向心力,供需关系在心里,径向合力提供足,供求平衡不心离;物理方程很关键,一串公式是武器。

3、万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

高中物理知识点总结三:力(常见的力、力的合成与分解)

1)常见的力

2)力的合成与分解

四、动力学(运动和力)

五、振动和波(机械振动与机械振动的传播)

六、冲量与动量(物体的受力与动量的变化)

七、功和能(功是能量转化的量度)

八、分子动理论、能量守恒定律

九、气体的性质

十、电场

十一、恒定电流

十二、磁场

十三、电磁感应

十四、交变电流(正弦式交变电流)

高考物理重要 常用公式有哪些

高考物理,需掌握以下基本公式与二级结论,记熟二级结论并能熟练应用更为关键。

高中物理重要公式与二级结论。

一.力?物体的平衡:

1.N个力平衡,则任意一个力与其它力的合力等大反向。.

2.三个大小相等的力平衡,力之间的夹角为120度

3.物体沿斜面匀速下滑,则?.

4.两个一起运动的物体“刚好脱离”时:?

恰接触不挤压,弹力为零。此时速度、加速度相等,此后不等.

5.同一根轻绳上的张力处处相等。.

6.物体受三个不共线力而处于平衡状态,则这三个力必交于一点(三力汇交原理).

7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法。

二.直线运动:

1.匀变速直线运动:?

平均速度:

时间等分时:

中间位置的速度:?

纸带处理求速度、加速度:?

2.初速度为零的匀变速直线运动的比例关系:

等分时间:相等时间内的位移之比 ?1:3:5:……

等分位移:相等位移所用的时间之比 ?

3.竖直上抛运动的对称性:t上=?t下,V上=?-V下

4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小于给出的时间时,用V2=2aS求滑行距离.

5.“S=3t+2t2”:a=4m/s2 ,V0=3m/s.

6.追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等.

7.运动的合成与分解中:

船头垂直河岸过河时,过河时间最短.

船的合运动方向垂直河岸时,过河的位移最短.

8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解.

三.牛顿运动定律:

1.超重、失重(选择题可直接应用,不是重力发生变化)

超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力.

失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。有完全失重(加速度向下为g).

2.几个临界问题:?   ?

3.速度最大时往往合力为零:

4.牛顿第二定律的瞬时性:

不论是绳还是弹簧:剪断谁,谁的力立即消失;不剪断时,绳的力可以突变,弹簧的力不可突变.

四.圆周运动、?万有引力:

1.向心力公式:?.?

2.同一皮带或齿轮上线速度处处相等,同一轮子上角速度相同.

3.在非匀速圆周运动(竖直平面内的圆周运动)中使用向心力公式的办法:沿半径方向的合力是向心力.

4.竖直平面内的圆运动:

(1)“绳”类:最高点最小速度

(此时绳子的张力为零),最低点最小速度

(2)“杆”:最高点最小速度0(此时杆的支持力为mg),最低点最小速度

5.开普勒第三定律:T2/R3=K(=4π2/GM){K:常量(与行星质量无关,取决于中心天体的质量)}.

6.万有引力定律:F=GMm/r2?=mv2/r=mω2r=m4π2r/T2?(G=6.67×10-11N?m2/kg2)

7.地球表面的万有引力等于重力:GMm/R2=mg;g=GM/R2?(黄金代换式)

8.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2?

(轨道半径变大时,线速度变小,角速度变小,加速度变小,势能变大,周期变大)

9.第一(二、三)宇宙速度V1=(g地R地)1/2=(GM/R地)1/2=7.9km/s(注意计算方法);V2=11.2km/s;V3=16.7km/s

10.地球同步卫星:T=24h,h=3.6×104km=5.6R地 (地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同)

11.卫星的最小发射速度和最大环绕速度均为V=7.9km/s,卫星的最小周期约为86分钟(环地面飞行的卫星)

12.双星引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。

13。物体在恒力作用下不可能作匀速圆周运动

14。圆周运动中的追赶问题(钟表指针的旋转和天体间的相对运动):?,其中T1<T2。

五.机械能:

1.求功的途径:

①用定义求恒力功.②用动能定理(从做功的效果)或能量守恒求功.

③由图象求功.④用平均力求功(力与位移成线性关系).

⑤由功率求功.

2.功能关系--------功是能量转化的量度,功不是能.

⑴重力所做的功等于重力势能的减少(数值上相等)

⑵电场力所做的功等于电势能的减少(数值上相等)

⑶弹簧的弹力所做的功等于弹性势能的减少(数值上相等)

⑷分子力所做的功等于分子势能的减少(数值上相等)

⑷合外力所做的功等于动能的增加(所有外力)

⑸只有重力和弹簧的弹力做功,机械能守恒

⑹克服安培力所做的功等于感应电能的增加(数值上相等)

(7)除重力和弹簧弹力以外的力做功等于机械能的增加

(8)功能关系:摩擦生热Q=f?S相对?(f滑动摩擦力的大小,ΔE损为系统损失的机械能,Q为系统增加的内能)

(9)静摩擦力可以做正功、负功、还可以不做功,但不会摩擦生热;滑动摩擦力可以做正功、负功、还可以不做功,但会摩擦生热。

(10)作用力和反作用力做功之间无任何关系,?但冲量等大反向。一对平衡力做功不是等值异号,就是都不做功,但冲量关系不确定。

3.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体的动能.

4.发动机的功率P=Fv,当合外力F=0时,有最大速度vm=P/f (注意额定功率和实际功率).

5.00≤α<900?做正功;900<α≤1800做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功).

6.能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J.

六.动量:

1.同一物体某时刻的动能和动量大小的关系:?

2.碰撞的分类?:

①弹性碰撞——动量守恒,动能无损失

②完全非弹性碰撞——?动量守恒,动能损失最大。(以共同速度运动)

③非完全弹性碰撞——?动量守恒,动能有损失。碰撞后的速度介于上面两种碰撞的速度之间(大物碰静止的小物,大物不可能速度为零或反弹)

3.一维弹性碰撞:?动物碰静物:V2=0,?

(质量大碰小,一起向前;质量相等,速度交换;小碰大,向后转)

4.A追上B发生碰撞,满足三原则:

①动量守恒?②动能不增加③合理性原则{A不穿过B(?)}

5.小球和弹簧:①A、B两小球的速度相等为弹簧最短或最长或弹性势能最大时

②弹簧恢复原长时,A、B球速度有极值:若MA≥MB时,B球有最大值,A球有最小值;若MA<MB时,A球最小值为零,B球速度可求,但不为极值.(如图)

6.解决动力学问题的三条思路:力、功能、动量

七.机械振动和机械波:

1.物体做简谐振动:

①在平衡位置达到最大值的量有速度、动能

②在最大位移处达到最大值的量有回复力、加速度、势能

③通过同一点有相同的位移、速率、回复力、加速度、动能、势能、可能有不同的运动方向

④经过半个周期,物体运动到对称点,速度大小相等、方向相反。

⑤经过一个周期,物体运动到原来位置,一切参量恢复。

2.由波的图象讨论波的传播距离、时间、周期和波速等时:注意“双向”和“多解”

3.波动图形上,介质质点的振动方向:“上坡下,下坡上”;振动图像中介质质点的振动方向为“上坡上,下坡下”.(要区分开)

4.波进入另一介质时,频率不变、波长和波速改变,波长与波速成正比(机械波的波速只有介质决定)。

5.波动中,所有质点都不会随波逐流,所有质点的起振方向都相同?

6.两列频率相同、且振动情况完全相同的波,在相遇的区域能发生干涉。波峰与波峰(波谷与波谷)相遇处振动加强(△s=?±?kλ?k=0、1、2、3……);波峰与波谷相遇处振动减弱(△s=?±(2k+1)λ/2?k=0、1、2、3……)干涉和衍射是波的特征。

7.受迫振动时,振动频率等于驱动力频率,与固有频率无关.只有当驱动力频率等于固有频率时会发生共振.

八.热学

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10—10米,原子核直径数量级10—15米

2.分子质量m=M/N?(M为摩尔质量,N为阿伏加德罗常数);分子体积为V0=V/N?(V为摩尔体积,注意:如果是气体,则为分子的占有体积)

3.布朗运动是微粒的运动,不是分子的运动.

4.分子势能用分子力做功来判断,r0处分子势能最小,分子力为零.

5.分析气体过程有两条路:一是用参量分析(PV/T=C)、二是用能量分析(ΔE=W+Q)。内能变化看温度,做功情况看体积,吸放热则综合前两项考虑

6.一定质量的理想(分子力不计)气体,内能看温度,做功看体积,吸热放热综合以上两项用能量守恒分析。

九.电场:

1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值(减少量):?。

2.粒子飞出偏转电场时“速度的反向延长线,通过沿电场方向的位移的中心”。

3.讨论电荷在电场里移动过程中电场力的功基本方法:把电荷放在起点处,标出位移方向和电场力的方向,分析功的正负,并用W=FS计算其大小;或用W=qU计算.

4.处于静电平衡的导体内部合场强为零,整个是个等势体,其表面是个等势面.

5.电场线的疏密反映E的大小;沿电场线的方向电势越来越低;电势与场强之间没有联系.

6.电容器接在电源上,电压不变;?断开电源时,电容器电量不变;改变两板距离,场强不变。

7.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。

8.带电粒子在交变电场中的运动:

①直线运动:不同时刻进入,可能一直不改方向的运动;可能时而向左时而向右运动;可能往返运动(可用图像处理)

②垂直进入:若在电场中飞行时间远远小于电场的变化周期,则近似认为在恒定电场中运动(处理为类平抛运动);若不满足以上条件,则沿电场方向的运动处理同①

③带电粒子在电场和重力场中做竖直方向的圆周运动用等效法:当重力和电场力的合力沿半径且背离圆心处速度最大,当其合力沿半径指向圆心处速度最小.

9.沿电场线的方向电势越来越低,电势和场强大小没有联系.

十.恒定电流:

1.电流的微观定义式:I=nqsv

2.等效电阻估算原则:电阻串联时,大的为主;电阻并联时,小的为主。

3.电路中的一个滑动变阻器阻值发生变化,有并同串反关系:电阻增大,与它并联的电阻上电流或电压变大,?与它串联的电阻上电流或电压变小;电阻减小,与它并联的电阻上电流或电压变小,?与它串联的电阻上电流或电压变大.

4.外电路任一处的一个电阻增大,总电阻增大,总电流减小,路端电压增大。

外电路任一处的一个电阻减小,总电阻减小,总电流增大,路端电压减小。

5.画等效电路的办法:始于一点(电源正极),止于一点(电源负极),盯住一点(中间等势点),步步为营。

6.纯电阻电路中,内、外电路阻值相等时输出功率最大(R外=r),;

7.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。稳定时,与它串联的电阻是虚设,如导线。在电路变化时电容器有充、放电电流。

恒定电流实验:

1.?考虑电表内阻的影响时,电压表和电流表在电路中,?既是电表,又是电阻。

2.?选用电压表、电流表:

①?测量值不许超过量程。

②?测量值越接近满偏值(表针偏转角度越大)误差越小,一般应大于满偏值的三分之一。

③?电表不得小偏角使用,偏角越小,相对误差越大?。

3.选欧姆表时,指针偏角应在三分之一到三分之二之间(选档、换档后,经过“调零”才能进行测量)。.

4.选限流用的滑动变阻器:在能把电流限制在允许范围内的前提下选用总阻值较小的变阻器调节方便;?选分压用的滑动变阻器:阻值小的便于调节且输出电压稳定,但耗能多。

5.分压式和限流式电路的选择:

①题目要求电压或电流从零可调(校对电路、测伏安特性曲线),一定要用分压式。?

②滑动变阻器的最大值比待测电阻的阻值小很多时,限流式不起大作用,要用分压式。

③用限流式时不能保证用电器安全时用分压式。

④分压和限流都可以用时,限流优先(能耗小)。

6.伏安法测量电阻时,电流表内、外接的选择:

①RX远大于RA时,用内接法,误差来源于电流表分压,测量值偏大;

②RV远大于RX时,用外接法,误差来源于电压表分流,测量值偏小.

③?大于?时,?用内接法;?小于?时,?用外接法

7.电压表或电流表中,电流大小与其偏转角成正比,一般有左进左偏,右进右偏

8.测电阻常用方法:

①伏安法?②替代法?③半偏法?④比较法

9.已知内阻的电压表可当电流表使用;已知内阻的电流表可当电压表使用;已知电流的定值电阻可当电压表使用;已知电压的定值电阻可当电流表使用.

10.欧姆表的中值电阻刚好等于其欧姆表的内阻.

十一.磁场:

1.圆形磁场区域:带电粒子沿半径方向进入,则出磁场时速度方向必过圆心

2.粒子速度垂直于磁场时,做匀速圆周运动:?,?(周期与速率无关)。

3.粒子径直通过正交电磁场(离子速度选择器):粒子穿过磁场的有关计算,抓几何关系,即入射点与出射点的半径和它们的夹角

4.最小圆形磁场区域的计算:找到磁场边界的两点,以这两点的距离为直径的圆面积最小

5.圆形磁场区域中飞行的带电粒子的最大偏转角为进入点和出点的连线刚好为磁场的直径

6.要知道以下器件的原理:质谱仪、速度选择器、磁流体发电机、霍耳效应、电磁流量计、地磁场、磁电式电表原理、回旋加速器、电磁驱动、电磁阻尼、高频焊接等.

7。带电粒子在匀强电场、匀强磁场和重力场中,如果做直线运动,一定做匀速直线运动。如果做匀速圆周运动,重力和电场力一定平衡,只有洛仑兹力提供向心力。

8。电性相同的电荷在同一磁场中旋转时,旋转方向相同,与初速度方向无关。

十二.电磁感应:

1.?楞次定律的若干推论:

(1)内外环电流或者同轴的电流方向:“增反减同”

(2)导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。

(3)磁场“╳增加”与“?减少”感应电流方向一样,反之亦然。

(4)磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势

2.运用楞次定律的若干经验:

①内外环电路或者同轴线圈中的电流方向:“增反减同”

②导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。

③“×增加”与“?减少”,感应电流方向一样,反之亦然。

④单向磁场磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势。?通电螺线管外的线环则相反。

⑤楞次定律逆命题:双解,“加速向左”与“减速向右”等效。

⑥感应电流的方向变否,可以看B-t图像中斜率正负是否变化.

3.磁通量的计算中,无论线圈有多少匝,计算时都为φ=BS

4.自感现象中,灯泡是否闪亮,要看后来的电流是否比原来大,若是,则闪亮,否则不闪亮.日光灯线路连接.

5.楞次定律逆命题:双解,“加速向左”与“减速向右”等效。

6.法拉第电磁感应定律求出的是平均电动势,在产生正弦交流电情况下只能用来求感生电量,不能用来求功和能量。

7.直杆平动垂直切割磁感线时所受的安培力:?

8.转杆(轮)发电机:

9.感生电量:?

十三.交流电:

1.正弦交流电的产生:

中性面为垂直磁场方向,此时磁通量最大,磁通量的变化率为零,电动势为零

线圈平面平行于磁场方向时,?此时磁通量最小,磁通量的变化率最大,电动势最大。

最大电动势:?与Em此消彼长,一个最大时,另一个为零。

2.交流电中,注意有效值和平均值的区别,能量用有效值,电量用平均值.

3.求电量的方法有两种:①用平均电动势得q=nΔφ/R?②动量定理

4.非正弦交流电的有效值的求法:I2RT或U2T/R等于一个周期内产生的总热量.

5.理想变压器原副线之间量的决定关系:电压原线圈决定副线圈;电流副线圈决定原线圈;功率副线圈决定原线圈

6.变压器中说负载增加,实为并联的用电器增多,负载电阻减小.

7.远距离输电计算的思维模式要记好.

8.自藕变压器和滑动变阻器,电流互感器和电压互感器要区分.

9.理想变压器原副线圈之间相同的量:?

十四.电磁场和电磁波:

1.电磁振荡中电容器上的电量q与电流i的关系总是相反。

2.?电磁场理论?:

 ①变化的磁(电)场产生电(磁)场

 ②均匀变化的磁(电)场产生的稳定的电(磁)场

 ③周期性变化的磁(电)场产生周期性变化的电(磁)场

3.感抗为XL=2πLf;容抗为XC=1/2πfc

十五.光的反射和折射:

1.光通过平行玻璃砖,出玻璃砖时平行于原光线;光过棱镜,向底边偏转.

2.光线射到球面和柱面上时,半径是法线.

3.单色光对比的七个量:偏折角、折射率、波长、频率、介质中的光速、光子能量、临界角.

4.可见光中:红光的折射率最小,紫光的折射率最大;红光在介质中的光速最大,紫光在介质中的光速最小;红光最不易发生全反射,紫光最易发生全反射;红光的波动性比紫光强,粒子性比紫光弱;红光的干涉条纹(或衍射条纹的中间条纹)间距比紫光大;紫光比红光更易引起光电效应.

5.视深公式h’=h/n?(水中看七色球,感觉红球最深,紫球最浅)

十六.光的本性:

1.双缝干涉图样的“条纹宽度”(相邻明条纹中心线间的距离):?。

2.增透膜增透绿光,其厚度为绿光在膜中波长的四分之一。

3.薄膜干涉中用标准样板(空气隙干涉)检查工件表面情况:条纹向窄处弯是凹,向宽处弯是凸(左凹右凸)。

4.电磁波穿过介质面时,频率(和光的颜色)不变。

十七.量子论初步

1.个别光子表现出粒子性;大量光子表现出波动性

2.跃迁中,从n能级跃迁到基态时,将会放出Cn2种不同频率的光.

3.能引起跃迁的,若用光照,能电离可以,否则其能量必须等于能级差,才能使其跃迁;若用实物粒子碰撞,只要其动能大于(或等于)能级差,就能跃迁.

4.个别光子表现为粒子性,大量光子表现为波动性.

十七.原子物理:?

1.磁场中的衰变:外切圆是?衰变,内切圆是?衰变,半径与电量成反比。

2.衰变方程、人工核转变、裂变、聚变这四种方程要区分

3.1u相当于931.5MeV,注意题目中的质量单位是Kg还是u.?

4.核反应总质量增大时吸能,总质量减少时放能,仅在人工转变中有一些是吸能的核反应。

其它常见非常有用的经验结论:

1、物体沿倾角为α的斜面匀速下滑------?=tanα?;

物体沿光滑斜面滑下a=gsinα物体沿粗糙斜面滑下a=gsinα-gcosα

2、两物体沿同一直线运动,在速度相等时,距离?有最大或最小;

3、物体沿直线运动,速度最大的条件是:?a=0或合力为零?。

4、两个共同运动的物体刚好脱离时,两物体间的弹力为?=0?,加速度?相等?。

5、两个物体相对静止,它们具有相同的?速度?;

6、水平传送带以恒定速度运行,小物体无初速度放上,达到共同速度过程中,摩擦生热等于小物体的动能。

7、一定质量的理想气体,内能大小看?温度,做功情况看体积?,吸热、放热综合以上两项用能量守恒定律分析。

8、电容器接在电源上,?电压?不变;断开电源时,电容器上电量不变;改变两板距离?E?不变。

10、磁场中的衰变:外切圆是?α衰变,内切圆是?β?衰变,α,β是大圆。

11、直导体杆垂直切割磁感线,所受安培力F=?B2L2V/R。

12、电磁感应中感生电流通过线圈导线横截面积的电量:Q=?N△Ф/R。

13、解题的优选原则:满足守恒则选用守恒定律;与加速度有关的则选用牛顿第二定律F=ma;与时间直接相关则用动量定理;与对地位移相关则用动能定理;与相对位移相关(如摩擦生热)则用能量守恒。

高中物理公式(要全点)

一,力学

胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长,粗细和材料有关)

重力: G = mg (g随离地面高度,纬度,地质结构而变化;重力约等于地面上物体受到的地球引力)

3 ,求F,的合力:利用平行四边形定则.

注意:(1) 力的合成和分解都均遵从平行四边行法则.

(2) 两个力的合力范围: F1-F2 F F1 + F2

(3) 合力大小可以大于分力,也可以小于分力,也可以等于分力.

4,两个平衡条件:

共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零.

F合=0 或 : Fx合=0 Fy合=0

推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点.

[2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向

(2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解)

力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)

5,摩擦力的公式:

(1) 滑动摩擦力: f= FN

说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G

② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小,接触面相对运动快慢以及正压力N无关.

(2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比.

大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关)

说明:

a ,摩擦力可以与运动方向相同,也可以与运动方向相反.

b,摩擦力可以做正功,也可以做负功,还可以不做功.

c,摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反.

d,静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用.

6, 浮力: F= gV (注意单位)

7, 万有引力: F=G

适用条件:两质点间的引力(或可以看作质点,如两个均匀球体).

G为万有引力恒量,由卡文迪许用扭秤装置首先测量出.

在天体上的应用:(M--天体质量 ,m—卫星质量, R--天体半径 ,g--天体表面重力加速度,h—卫星到天体表面的高度)

a ,万有引力=向心力

G

b,在地球表面附近,重力=万有引力

mg = G g = G

第一宇宙速度

mg = m V=

8, 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力)

电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反)

10,磁场力:

洛仑兹力:磁场对运动电荷的作用力.

公式:f=qVB (BV) 方向--左手定则

安培力 : 磁场对电流的作用力.

公式:F= BIL (BI) 方向--左手定则

11,牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay

适用范围:宏观,低速物体

理解:(1)矢量性 (2)瞬时性 (3)独立性

(4) 同体性 (5)同系性 (6)同单位制

12,匀变速直线运动:

基本规律: Vt = V0 + a t S = vo t +a t2

几个重要推论:

(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)

(2) A B段中间时刻的瞬时速度:

Vt/ 2 == (3) AB段位移中点的即时速度:

Vs/2 =

匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 初速为零的匀加速直线运动,在1s ,2s,3s……ns内的位移之比为12:22:32……n2; 在第1s 内,第 2s内,第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内,第2米内,第3米内……第n米内的时间之比为1:: ……(

初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a--匀变速直线运动的加速度 T--每个时间间隔的时间)

竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.

上升最大高度: H =

(2) 上升的时间: t=

(3) 上升,下落经过同一位置时的加速度相同,而速度等值反向

(4) 上升,下落经过同一段位移的时间相等. 从抛出到落回原位置的时间:t =

(5)适用全过程的公式: S = Vo t --g t2 Vt = Vo-g t

Vt2 -Vo2 = - 2 gS ( S,Vt的正,负号的理解)

14,匀速圆周运动公式

线速度: V= R =2f R=

角速度:=

向心加速度:a =2 f2 R

向心力: F= ma = m2 R= mm4n2 R

注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心.

(2)卫星绕地球,行星绕太阳作匀速圆周运动的向心力由万有引力提供.

氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供.

15,平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动

水平分运动: 水平位移: x= vo t 水平分速度:vx = vo

竖直分运动: 竖直位移: y =g t2 竖直分速度:vy= g t

tg = Vy = Votg Vo =Vyctg

V = Vo = Vcos Vy = Vsin

在Vo,Vy,V,X,y,t,七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量.

16, 动量和冲量: 动量: P = mV 冲量:I = F t

(要注意矢量性)

17 ,动量定理: 物体所受合外力的冲量等于它的动量的变化.

公式: F合t = mv' - mv (解题时受力分析和正方向的规定是关键)

18,动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变. (研究对象:相互作用的两个物体或多个物体)

公式:m1v1 + m2v2 = m1 v1'+ m2v2'或p1 =- p2 或p1 +p2=O

适用条件:

(1)系统不受外力作用. (2)系统受外力作用,但合外力为零.

(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力.

(4)系统在某一个方向的合外力为零,在这个方向的动量守恒.

19, 功 : W = Fs cos (适用于恒力的功的计算)

理解正功,零功,负功

(2) 功是能量转化的量度

重力的功------量度------重力势能的变化

电场力的功-----量度------电势能的变化

分子力的功-----量度------分子势能的变化

合外力的功------量度-------动能的变化

20, 动能和势能: 动能: Ek =

重力势能:Ep = mgh (与零势能面的选择有关)

21,动能定理:外力所做的总功等于物体动能的变化(增量).

公式: W合= Ek = Ek2 - Ek1 = 22,机械能守恒定律:机械能 = 动能+重力势能+弹性势能

条件:系统只有内部的重力或弹力做功.

公式: mgh1 + 或者 Ep减 = Ek增

23,能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功.

E = Q = f S相

24,功率: P = (在t时间内力对物体做功的平均功率)

P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)

25, 简谐振动: 回复力: F = -KX 加速度:a = -

单摆周期公式: T= 2 (与摆球质量,振幅无关)

(了解)弹簧振子周期公式:T= 2 (与振子质量,弹簧劲度系数有关,与振幅无关)

26, 波长,波速,频率的关系: V == f (适用于一切波)

二,热学

1,热力学第一定律:U = Q + W

符号法则:外界对物体做功,W为"+".物体对外做功,W为"-";

物体从外界吸热,Q为"+";物体对外界放热,Q为"-".

物体内能增量U是取"+";物体内能减少,U取"-".

2 ,热力学第二定律:

表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化.

表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化.

表述三:第二类永动机是不可能制成的.

3,理想气体状态方程:

(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化.

(2) 公式: 恒量

4,热力学温度:T = t + 273 单位:开(K)

(绝对零度是低温的极限,不可能达到)

三,电磁学

(一)直流电路

1,电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数)

2,电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)

3,电阻串联,并联:

串联:R=R1+R2+R3 +……+Rn

并联: 两个电阻并联: R=

4,欧姆定律:(1)部分电路欧姆定律: U=IR

(2)闭合电路欧姆定律:I =

路端电压: U = -I r= IR

电源输出功率: = Iε-Ir =

电源热功率:

电源效率: = =

(3)电功和电功率:

电功:W=IUt 电热:Q= 电功率 :P=IU

对于纯电阻电路: W=IUt= P=IU =

对于非纯电阻电路: W=Iut P=IU

(4)电池组的串联:每节电池电动势为`内阻为,n节电池串联时:

电动势:ε=n 内阻:r=n

(二)电场

1,电场的力的性质:

电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关)

点电荷电场的场强: E = (注意场强的矢量性)

2,电场的能的性质:

电势差: U = (或 W = U q )

UAB = φA - φB

电场力做功与电势能变化的关系:U = - W

3,匀强电场中场强跟电势差的关系: E = (d 为沿场强方向的距离)

4,带电粒子在电场中的运动:

铀? Uq =mv2

②偏转:运动分解: x= vo t ; vx = vo ; y =a t2 ; vy= a t

a =

(三)磁场

几种典型的磁场:通电直导线,通电螺线管,环形电流,地磁场的磁场分布.

磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B‖I,则力的大小为零)

磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B‖v,则力的大小为零)

带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动.即: qvB =

可得: r = , T = (确定圆心和半径是关键)

(四)电磁感应

1,感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律.

2,感应电动势的大小:① E = BLV (要求L垂直于B,V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值)

(五)交变电流

1,交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω .

2 ,正弦式交流的有效值:E = ;U = ; I =

(有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)

3 ,电感和电容对交流的影响:

电感:通直流,阻交流;通低频,阻高频

电容:通交流,隔直流;通高频,阻低频

电阻:交,直流都能通过,且都有阻碍

4,变压器原理(理想变压器):

①电压: ② 功率:P1 = P2

③ 电流:如果只有一个副线圈 : ;

若有多个副线圈:n1I1= n2I2 + n3I3

电磁振荡(LC回路)的周期:T = 2π

四,光学

1,光的折射定律:n =

介质的折射率:n =

2,全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角. 临界角C: sin C =

3,双缝干涉的规律:

①路程差ΔS = (n=0,1,2,3--) 明条纹

(2n+1) (n=0,1,2,3--) 暗条纹

相邻的两条明条纹(或暗条纹)间的距离:ΔX =

4,光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于6.63×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 )

(爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关)

5,物质波的波长: = (其中h 为普朗克常量,p 为物体的动量)

五,原子和原子核

氢原子的能级结构.

原子在两个能级间跃迁时发射(或吸收光子):

hυ = E m - E n

核能:核反应过程中放出的能量.

质能方程: E = m C2 核反应释放核能:ΔE = Δm C2

复习建议:

1,高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中.

力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等.⑤⑥

解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型.解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律).后两种方法由于只要考虑初,末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的.

电磁学的重点是:①电场的性质;②电路的分析,设计与计算;③带电粒子在电场,磁场中的运动;④电磁感应现象中的力的问题,能量问题等等.

2,热学,光学,原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择,实验的形式出现.但绝对不能认为这部分内容分数少而不重视,正因为内容少,规律少,这部分的得分率应该是很高的.

高考物理常用公式

高考物理常用公式包括但不限于以下几个方面:力学、热力学、电学、光学等。下面将从这几个方面来介绍高考物理常用公式,帮助考生在备考时更好地掌握这些公式。

首先,力学是高考物理中重要的一部分,其中常用的公式包括牛顿第二定律F=ma,弹性势能E=1/2kx^2,动能E=1/2mv^2,万有引力定律F=Gm1m2/r^2等等。这些公式涵盖了物理学中很多关键概念的描述,如物体的质量、加速度、受力情况等等。

其次,热力学是描述物体热学现象的一个分支学科,相关公式包括热力学第一定律Q=W+△U,绝热过程公式PV^γ=常数,等压过程公式W=P△V,等温过程公式W=nRT ln(V2/V1),以及卡诺循环效率公式η=1-Tc/Th等等。

在电学领域,高考物理中常用的公式有欧姆定律I=U/R,电功率公式P=UI,电容公式C=Q/U,磁感应强度公式B=F/Il,电场强度公式E=F/Q等等。这些公式在解决电学题目时非常有用。

光学是高考物理中的重要分支之一,与光学相关的公式包括薄透镜成像公式1/f=1/v+1/u,折射定律公式n1sinθ1=n2sinθ2,杨氏实验公式Δy=Dλ/d等等。这些公式对于解决光学问题非常有帮助。

另外,除了上述几个方面之外,还有一些其他的常用公式也需要考生掌握,例如引力势能公式U=-GMm/r,动量守恒公式m1v1+m2v2=(m1+m2)v,电磁感应法拉第电磁感应定律公式ε=-dφ/dt,等等。这些公式在高考物理中也会经常使用到。

在掌握了这些常用公式的同时,考生还需要注意它们的使用条件和一些特殊情况。例如,在使用热力学第一定律时需要注意系统内部能量的变化是正还是负,亦或在运用莫尔斯定律时需要注意分子间距离的变化范围等等。只有将这些特殊情况考虑进去,才能够更加准确地应用公式解题。

综上所述,高考物理中常用的公式包括力学、热力学、电学、光学等多个方面,涵盖了物理学中的许多关键概念和原理。在备考高考物理时,各位考生需要认真掌握这些常用公式,并能够熟练运用它们解决各种题目。

文章标签: # 方向 # 物体 # 公式