您现在的位置是: 首页 > 教育改革 教育改革

2013年湖南高考数学卷_2013湖南高考数学试题

tamoadmin 2024-05-18 人已围观

简介1.2023湖南高考数学试卷难不难 考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助! 高考文科数学考点总结 第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。 第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或

1.2023湖南高考数学试卷难不难

2013年湖南高考数学卷_2013湖南高考数学试题

考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!

高考文科数学考点总结

第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。

第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联络比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含引数。

 湖南高考文科数学考点一:直线方程

1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

注:①当或时,直线垂直于轴,它的斜率不存在.

②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.

3. ⑴两条直线平行:

∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且

推论:如果两条直线的倾斜角为则∥.

⑵两条直线垂直:

两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件

4. 直线的交角:

⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

5. 过两直线的交点的直线系方程为引数,不包括在内

湖南高考文科数学考点二:轨迹方程

一、求动点的轨迹方程的基本步骤

⒈建立适当的座标系,设出动点M的座标;

⒉写出点M的 *** ;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。

⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

湖南高考文科数学考点三:导数

一、函式的单调性

在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.

f′x≥0?fx在a,b上为增函式.

f′x≤0?fx在a,b上为减函式.

二、函式的极值

1、函式的极小值:

函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.

2、函式的极大值:

函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.

极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

三、函式的最值

1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.

2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.

四、求可导函式单调区间的一般步骤和方法

1、确定函式fx的定义域;

2、求f′x,令f′x=0,求出它在定义域内的一切实数根;

3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;

4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.

湖南高考文科数学考点四:不等式

1理解不等式的性质及其证明。

导读

不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:

加强化归意识,把比较大小问题转化为实数的运算;

通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;

强化函式的性质在大小比较中的重要作用,加强知识间的联络;

不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a

一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;

对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;

对于含参问题的大小比较要注意分类讨论。

2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

导读

1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。

2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。

3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。

3掌握分析法、综合法、比较法证明的简单不等式。

导读

1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。

2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。

3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。

湖南高考文科数学考点五:几何

1棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

4圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

7球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还:

2023湖南高考数学试卷难不难

整体难度仁者见仁智者见智

个人感觉

选择题:12457都是送分的,3.6.8.9.10要细心一点拿满分问题不大

填空题:都很简单。第14题本来很难的位置放了一道推理题。15题不等式那个柯西不等式的可以避开选第B或C

大题:16是打酱油的三角函数,简单。17考试之前都已经猜的到课本例题,第二问反证法即可

18题只要你看到空间向量的用武之地秒杀不是问题,简单。19题细心一点应该也差不多

20题出了个抛物线,没想到,但难度不大。第二问纯粹的特殊点问题定点问题。先设个斜率不存在找出特殊点,再证恒过(1,0)即可,运算量不大。

21题最难了吧就算,做到此处强弩之末果断步骤分走人即可。考得的切线零点不等式。

很多人在高考结束后都在问我,今年的高考难不难?

6月7日当天下午考试刚过,我就进各大论坛贴吧去看同学们的各种倾诉。从看到的各种吐槽中,我的直观感受是今年陕西的试题应该不简单。

第一时间拿到真题以后,先大致扫了一遍,整个试卷没有偏题怪题。凡是这次考试考的,都是老师给学生们复习过的。所以很多人在问我,今年高考估中了多少分,这个问题着实难回答,也没有多大意义。说多了感觉在吹自己牛皮,说少了显得自己很没有水平。摸着良心说一句,考试的题型全都讲过,只要基础扎实,发挥出真实水平,高分很容易。

大致说来,今年陕西省高考数学试题的命题以下几个特点尤为突出:

1、痴心不改玩证明,万法归宗回教材。

2010年,四川省高考题出了证明三角函数两角和与差公式这样一道题。陕西高考命题组受到了启发,把这一题型发扬光大,叙述证明成为了为考生准备的一道特色菜。2011年,一道叙述并证明余弦定理如一道闪电把考生们劈的外焦里嫩,七窍生烟,都说不带这么玩的,可陕西就这么玩起来了。2012年,三垂线定理的横空出世又让很多学生、老师大跌眼镜。2013年高考之前,很多老师和学生都猜测,陕西的命题人肯定会痴心不改,那么三角函数考过了,立体几何玩完了,接下来概率、解析几何、导数都是奔着压轴去的,唯一有出类似证明可能的机会就落在了数列这一版块上。新道恒的老师们在考试最后一卷中给文理科各出了一道叙述并证明等差数列和等比数列求和公式。当我看到真卷上同样的题之后,我笑了。果然是痴心不改啊,按着这个逻辑,2014年要出解析几何呀!从形式上看,一年一道叙述并证明题目;从本质上看,是对数学知其然知其所以然的回归。因此,今后高一的学生在学习时,一定要注意听老师对基本的定理推理讲解。这比利用定理去解题更有价值。高二的学生复习方向也很明确,回归教材,扎实基础,是高分的基本前提。

2、已知条件躲猫猫,犹抱琵琶半遮面。

2013年陕西文理数学很多题目都有这个特点,已知条件给的不够豪爽,欲语还休的,总是需要多想一下。就这一下,截下来一批悲催的人。有的题目出的是个小综合,牵扯到很多小的知识点,这非常类似我们新道恒考前十套题的风格。小题如让理科考生很蛋疼的第6.8.10题。大题如今年文理科最后一题涉及到的反函数。题目中给了一个指数函数,后面知识点涉及到了它的反函数的切线方程问题。在给学生讲解指数函数和对数函数时,我说这两个函数很多特点都很像,像一对兄弟一样,不妨美其名曰兄弟函数。但很多兄弟最后都因为各种原因最后反目成仇了,所以专业上数学把这两个函数叫互为反函数。这个题目知识点相对简单,但近几年一直未考,有的老师在涉及到这类题目时直接放掉,导致很多孩子在看到这个题目时忽然愣住了。这个已知条件挖掘不出来,后面感觉浑身的劲使不出来。这种小综合题,一环扣一环,哪个环节出了问题,都会很受伤。所以一定要具备揭开神秘面纱的本领。

3、文理数学区别大,男女生分两重天。

相对于2012年文理科有8道小题完全一样,两道大题完全一样的懒惰试卷题目配置,今年文理科数学一共仅有3道小题一样,使文理区别、特点更显著。

理科数学需要掌握的知识点要比文科多一些,比如二项式定理、排列组合、离散型随机变量、定积分、空间向量等。因为要面面俱到,所以理科数学一来出综合题的情况更多,二来每年都可能会有漏网之鱼。去年理科的平面向量题目基本缺失,所以考试前和学生们探讨时猜测今年向量会结合三角函数出个大题,果不其然。今年理科数学又缺失了定积分,按这个逻辑关系,明年的考生们要小心了。定积分在高中理科数学中虽数边缘知识,但杀伤力不容小视。

相对于2012年高考题的皆大欢喜,今年的命题特点明显更具有区分度。今年的命题风格对学习成绩好、基础扎实的孩子特别有利。今年成绩好的本指望着数学往上拉拉分呢,结果成绩一出来,大家都一百二三,连平时没及过格的也尝到了上百的滋味。提起去年的陕西高考数学,高手们全是泪啊。同样的情形发生在这年陕西高考的英语考试上。在统计学上有这样一个推理结论:性别变量与英语和数学成绩之间存在着明显的相关性。一般说来,女生语言类学科会好些,如英语;男生工具类学科会好些,比如数学。在一对一的实例中,补数学的女生居多,补英语的更多的都是男生。今年据资深老师透露,高考英语属于皆大欢喜型,一百三十分不是梦。这对英语学的好的女生来讲,绝对是一盆凉水泼下来的感觉。这更加说明了短板效应,一定要提高自己的综合实力,尤其是薄弱环节。

年年岁岁题相似,岁岁年年人不同。陕西高考数学自主命题四年来,命题风格逐渐成型,命题水平也越来越高。只要知识点扎实,准备充分,考出好成绩,理想照进现实。望新道恒陪着你们一起走过这段辉煌岁月!

2023湖南高考数学试题总体来说不难。

湖南高考数学试卷总体来说不难,今年试题易中难的比例有所调整。

2023湖南高考是新高考全国一卷(语文、数学、外语),物理、化学、生物、政治、历史、地理等科目为本省自命题。采用新高考“3+1+2”模式的是“七省一市”,分别是广东、福建、湖南、湖北、河北、辽宁、江苏和重庆。

2023年湖南省高考数学试题总体来说不难。数学试题难不难想必一定是考生讨论的热门话题,有的人觉得难,有的人觉得不难。

2023湖南有考生表示:我感觉湖南今年数学难度不大,前面选择都不是很难,基本都是平日练习的常规题型,有个别有难度的题目,但是只要仔细分析也能逐渐找出解题思路。试题的阅读量和计算量都不是很大,考察数列的大题和最后一道关于导数的大题难度比较大。

我平时做数学卷子经常答不完,但这次我在考试打铃结束前基本都答完了,感觉心情还是挺轻松的。湖南数学试题整体难度还可以,但也有难的地方来拉开梯度。

湖南高考数学试卷总体来说不难,今年试题易中难的比例有所调整,如果说去年是5:3:2的话,那么今年试题易中难的比例约为4:3:3,基础试题的分值约有60分。单选题的前6题,多选题的前两题,填空题的14题、解答题的前4题的第一问均可视为基础题。

2023湖南高考数学试卷难度单单从试卷的试题本身来说,这个和每个人的知识点掌握程度和擅长的题目类型有关系,还和个人的临场发挥有关联,高考考生现场状态非常重要。

文章标签: # 直线 # 高考 # 函式