您现在的位置是: 首页 > 教育改革 教育改革
2014数学高考解析几何答案,2014数学高考解析几何
tamoadmin 2024-07-22 人已围观
简介1.2014江西高考考试说明出炉:英语词汇量增加100个2.文科数学高考中解析几何占多少分3.求助一道高考数学解析几何题。答对保证加分!!4.一道高考数学解析几何题。答对保证加分高考数学解析几何题解题技巧 每次和同学们谈及高考数学,大家似乎都有同感:高中数学难,高考数学解析几何又是难中之难。其实不然,解析几何题目自有路径可循,方法可依。只要经过认真的准备和正确的点拨,完全可以让高考数学的解析
1.2014江西高考考试说明出炉:英语词汇量增加100个
2.文科数学高考中解析几何占多少分
3.求助一道高考数学解析几何题。答对保证加分!!
4.一道高考数学解析几何题。答对保证加分
高考数学解析几何题解题技巧
每次和同学们谈及高考数学,大家似乎都有同感:高中数学难,高考数学解析几何又是难中之难。其实不然,解析几何题目自有路径可循,方法可依。只要经过认真的准备和正确的点拨,完全可以让高考数学的解析几何压轴题变成让同学们都很有信心的中等题目。
我们先来分析一下解析几何高考的命题趋势:
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右, 占总分值的20%左右。
(2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:
① 求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点问题(含切线问题);
③与曲线有关的最(极)值问题;
④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数量特征;
(3)能力立意,渗透数学思想:如2000年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定点的坐标公式、离心率等知识融为一体,有很强的综合性。一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。
在近年高考中,对直线与圆内容的考查主要分两部分:
(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;
②对称问题(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离.
以及其他“标准件”类型的基础题。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。
预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。
相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:
(1)考查圆锥曲线的概念与性质;
(2)求曲线方程和求轨迹;
(3)关于直线与圆及圆锥曲线的位置关系的问题.
选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为难题,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视.
请同学们注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。
考试大纲这部分的变动就是(1)、简单线性规划由08年的了解提高到理解,(2)、椭圆的参数方程由08年的了解提高到理解。
04----08年,解析几何部分的命题都是“一大两小”——一个解答题两个客观题,多是以平面向量为载体,综合圆锥曲线交汇处为主干,构筑成知识网络型圆锥曲线问题,使平面向量的知识与解析几何的知识得到了很好的整合。集中体现对考生综合知识和应变能力的考查。
考查的重点落在轨迹方程、直线与圆锥曲线的位置关系,往往是通过直线与圆锥曲线方程的联立、消元,借助于韦达定理代人、向量搭桥建立等量关系。考查题型涉及的知识点问题有求曲线方程问题、参数的取值范围问题、最值问题、定值问题、直线过定点问题、对称问题等,所以我们要掌握这些问题的基本解法。
命题特别注意对思维严密性的考查,解题时需要注意考虑以下几个问题:
1、设曲线方程时看清焦点在哪条坐标轴上;注意方程待定形式及参数方程的使用。
2、直线的斜率存在与不存在、斜率为零,相交问题注意“D”的影响等。
3、命题结论给出的方式:搞清题目所给的几个小题是并列关系还是递进关系。如果前后小题各自有强化条件,则为并列关系,前面小题结论后面小题不能用;不过考题经常给出的是递进关系,有(1)、第一问求曲线方程、第二问讨论直线和圆锥曲线的位置关系,(2)第一问求离心率、第二问结合圆锥曲线性质求曲线方程,(3)探索型问题等。解题时要根据不同情况考虑施加不同的解答技巧。
4、题目条件如与向量知识结合,也要注意向量的给出形式:
(1)、直接反映图形位置关系和性质的,如?=0,=( ),λ,以及过三角形“四心”的向量表达式等;
(2)、=λ:如果已知M的坐标,按向量展开;如果未知M的坐标,按定点公式代入表示M点坐标。
(3)、若题目条件由多个向量表达式给出,则考虑其图形特征(数形结合)。
5、考虑圆锥曲线的第一定义、第二定义的区别使用,注意圆锥曲线的性质的应用。
6、注意数形结合,特别注意图形反映的平面几何性质。
7、解析几何题的另一个考查的重点就是学生的基本运算能力,所以解析几何考题学生普遍感觉较难对付。为此我们有必要在平常的解题变形的过程中,发现积累一些式子的常用变形技巧,如分式的分离技巧,对称替代的技巧,构造对称式用韦达定理代入的技巧,构造均值不等式的变形技巧等,以便提升解题速度。
8、平面解析几何与平面向量都具有数与形结合的特征,所以这两者多有结合,在它们的知识点交汇处命题,也是高考命题的一大亮点.直线与圆锥曲线的位置关系问题是常考常新、经久不衰的一个考查重点,另外,圆锥曲线中参数的取值范围问题、最值问题、定值问题、对称问题等综合性问题也是高考的常考题型.解析几何题一般来说计算量较大且有一定的技巧性,需要“精打细算”,近几年解析几何问题的难度有所降低,但仍是一个综合性较强的问题,对考生的意志品质和数学机智都是一种考验,是高考试题中区分度较大的一个题目,有可能作为今年高考的一个压轴题出现.
例1已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)若△POM的面积为,求向量与的夹角。
(2)试证明直线PQ恒过一个定点。
高考命题虽说千变万化,但只要认真研究考纲和近三年高考试题以及2010年的模拟试题,找出相应的一些规律,我们就大胆地猜想高考解答题命题的一些思路和趋势,指导我们后面的复习。对待高考,我们应该取正确的态度,再大胆预测的同时,更要注重基础知识的进一步巩固,多做一些简单的综合练习,提高自己的解题能力.
是否可以解决您的问题?
2014江西高考考试说明出炉:英语词汇量增加100个
直线L过点M(2,1),且分别与x轴.y轴交于A.B两点,
直线斜率存在,设为k,L的直线方程y-1=k(x-2)
分别与x轴.y轴交于A(x,0).B(0,y)两点:
0-1=k(x-2)→x-2=-1/k,→x=(2k-1)/k,A((2k-1)/k,0)
y-1=k(0-2)→y-1=-2k,→y=1-2k,B(0,1-2k)
|MA|=√{[((2k-1)/k-2]^2+(0-1)^2}=√(1+k^2)/|k|
|MB|=√[(0-2)^2+(1-2k-1)^2]=2√(1+k^2)
|MA|·|MB|=[√(1+k^2)/|k|]*[2√(1+k^2)]=
2(1+k^2)/|k|=2[(1/|k|)+|k|]≥2*2(1/|k|)*|k|=4
|MA|·|MB|最小为4,此时|k|=1/|k|,k=±1
直线方程y-1=(x-2)或y-1=-(x-2),即
x-y-1=0或x+y-3=0
文科数学高考中解析几何占多少分
2月13日,记者从省教育考试院了解到,《2014年高考江西卷(语文、数学、英语)考试说明》已经出炉。今年我省高考,除语文、数学、英语(听力除外)自行命题外,文综、理综两科目考试,仍继续沿用全国卷。
2014年高考全科秘诀!!点击免费查看>> 语文:作文评定分两个等级
今年江西高考语文科目考试内容、分值、试卷结构等与2013年基本没有变化。考试内容仍为语言文字运用、名著阅读、古代诗文阅读、现代文阅读和写作五大内容。
考试说明中要求,作文的评定分为基础等级和发展等级,其中符合基础等级的考生作文,得分为及格线上下。1个错别字扣1分,重复的不计。作文要想拿高分,就要做到深刻、丰富、有文、有个性、有创新。
数学:理科明确选考范围
今年高考文科数学在试卷结构、试题类型等方面基本没有变化。考试内容方面,仍有集合、函数概念与基本初等函数、立体几何、平面解析几何、算法、统计、概率、基本初等函数(三角函数)、数列、不等式、常用逻辑用语、不等式选讲等内容。
理科数学在去年的基础上明确了高考数学的选考内容,方便考生备考。具体来看,理科数学的选考内容将从选修系列4中的“坐标系与参数方程”和“不等式选讲”中各命制1道题目,考生可从中选择一题作答,如果两题都作答,则按第一题评阅给分。
英语:词汇量增加100个
今年我省高考英语词汇量比去年增加了100个,分值、试卷结构等基本无变化。试卷分Ⅰ、Ⅱ两卷,Ⅰ卷为选择题,包括听力、英语知识运用和阅读理解。Ⅱ卷为非选择题,包括阅读表达和书面表达。
有英语老师表示,近年来我省高考英语考查的词汇量都有不同幅度增加,此次词汇量增加100个,对考生备考影响不大。
文综:开放型题目适当增加
文综方面,政治科目将适当调整部分考点,更贴近生活实际,考查学生从现实生活角度来认识经济。历史科目难度保持稳定,开放型题目数量将有所增加。地理科目新增了地理原理示意图,考查考生读图及灵活运用地理学原理解决问题的能力。
理综:用理论解决实际问题
在理综方面,特别强调学生要会利用理论知识解决实际生产生活中碰到的新问题。
化学科目由于一些考点被删,难度会有所降低。物理难度将保持稳定,但要求考生理解基本物理概念,将课本中的重点演示实验、物理情景与生活实际相联系。生物科目强调考生要多关注生物学知识在技术、经济和生态环境中的作用,如环境中的雾霾、技术中的微生物培养等。
求助一道高考数学解析几何题。答对保证加分!!
文科数学高考中一般有2道选择题,1道填空题,1道大题,总共27分。
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
解析几何指借助笛卡尔坐标系,由笛卡尔、费马等数学家创立并发展。它是利用解析式来研究几何对象之间的关系和性质的一门几何学分支,亦叫做坐标几何。
严格地讲,解析几何利用的并不是代数方法,而是借助解析式来研究几何图形。这里面的解析式,既可以是代数的,也可以是超越的——例如三角函数、对数等。
通常默认代数式只由有限步的四则运算及开方构成,超越运算一般不属于代数学的研究范畴。
一道高考数学解析几何题。答对保证加分
(1)M(y^2/4a,y) N(1,0)
直接点与点的距离公式化简得
d=√(y^2/4a+2a-1)^2-4a^2+4a
当0<a小于等于0.5时,|M1N|=√4a-4a^2<1得0<a<0.5
当a>0.5时,|M1N|=1
所以0<a<0.5
(2)y^2/4a=1-2a得x=1-2a(因为x=y^2/4a),y^2=4a-8a^2
y^2=4a(1-2a)=2(2a-1+1)(1-2a)=2(1-x)x
化简得2y^2+(2x-1)^2=1 椭圆
(3)设A(x1,y1)B(x2,y2)
则2(y1^2-y2^2)+(2x1-1)^2-(2x2-1)^2=0
2(y1+y2)(y1-y2)+(2x1+2x2-2)(2x1-2x2)=0
(y1-y2)/(x1-x2)=2(1-x1-x2)/(y1+y2)
即k=2(1-x1-x2)/(y1+y2)
因为线段AB的中点在另一直线l2:y=x-1上
所以(y1+y2)/2=(x1+x2)/2-1
2(1-x1-x2)/(y1+y2)=-2/(y1+y2)
所以k=-2/(y1+y2)
由于y1+y2范围为[-√2/2,√2/2]
所以k范围为(-∞,-2√2]∪[2√2,+∞)
圆M和圆C1切于T
圆M和圆C2切于Q
MC1+MC2=C1T+QC2=4
椭圆
a=2 c=1
x^2/4+y^2/3=1 除点(2,0)
角C1PC2=90度,所以P的轨迹
x^2+y^2=1
PEmax为PE过O(0,0)
1+5^0.5
用极坐标方程
P(肉)=ep/(1-ecost)
e=c/a=1/2
p=a^2/c-c=3
AC=ep/(1-ecost)+ep/(1+ecost)=2ep/(1-(ecost)^2)
BD=2ep/(1-(esint)^2)
2*ABCD的面积S=AC*BD=(2ep)^2/(1-e^2+e^4(cost*sint)^2) min
所以cost*sint大
所以2cost*sint大
sin2t大=1
所以t=45度
代入得S