您现在的位置是: 首页 > 教育改革 教育改革

2017年全国高考理科数学_2017高考数学答案理

tamoadmin 2024-05-27 人已围观

简介1.2017年西藏高考数学基础练习(六)2.2017年高考数学平面向量必考知识点3.2017年数学高考卷子的六道大题4.17年高考数学是怎么了5.2022年河南高考数学(理科)参考答案及数学真题汇总(已更新)1、2017年广东省高考理科数学试卷为全国卷,今年的数学科目全国卷难度稍有增加,但没有出现大的难度变化。2、据今年高考考生反映,全国卷的数学科目比较难,大部分考生认为会影响到高考的发挥。201

1.2017年西藏高考数学基础练习(六)

2.2017年高考数学平面向量必考知识点

3.2017年数学高考卷子的六道大题

4.17年高考数学是怎么了

5.2022年河南高考数学(理科)参考答案及数学真题汇总(已更新)

2017年全国高考理科数学_2017高考数学答案理

1、2017年广东省高考理科数学试卷为全国卷,今年的数学科目全国卷难度稍有增加,但没有出现大的难度变化。

2、据今年高考考生反映,全国卷的数学科目比较难,大部分考生认为会影响到高考的发挥。

2017年西藏高考数学基础练习(六)

高中数学常用公式及常用结论

1. 元素与集合的关系

, .

2.德摩根公式

.

3.包含关系

4.容斥原理

.

5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.

6.二次函数的解析式的三种形式

(1)一般式 ;

(2)顶点式 ;

(3)零点式 .

7.解连不等式 常有以下转化形式

.

8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .

9.闭区间上的二次函数的最值

二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:

(1)当a>0时,若 ,则 ;

, , .

(2)当a<0时,若 ,则 ,若 ,则 , .

10.一元二次方程的实根分布

依据:若 ,则方程 在区间 内至少有一个实根 .

设 ,则

(1)方程 在区间 内有根的充要条件为 或 ;

(2)方程 在区间 内有根的充要条件为 或 或 或 ;

(3)方程 在区间 内有根的充要条件为 或 .

11.定区间上含参数的二次不等式恒成立的条件依据

(1)在给定区间 的子区间 (形如 , , 不同)上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .

(2)在给定区间 的子区间上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .

(3) 恒成立的充要条件是 或 .

12.真值表

p q 非p p或q p且q

真 真 假 真 真

真 假 假 真 假

假 真 真 真 假

假 假 真 假 假

13.常见结论的否定形式

原结论 反设词 原结论 反设词

是 不是 至少有一个 一个也没有

都是 不都是 至多有一个 至少有两个

大于 不大于 至少有 个

至多有( )个

小于 不小于 至多有 个

至少有( )个

对所有 ,

成立 存在某 ,

不成立

对任何 ,

不成立 存在某 ,

成立

14.四种命题的相互关系

原命题 互逆 逆命题

若p则q 若q则p

互 互

互 为 为 互

否 否

逆 逆

否 否

否命题 逆否命题

若非p则非q 互逆 若非q则非p

15.充要条件

(1)充分条件:若 ,则 是 充分条件.

(2)必要条件:若 ,则 是 必要条件.

(3)充要条件:若 ,且 ,则 是 充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

16.函数的单调性

(1)设 那么

上是增函数;

上是减函数.

(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.

17.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.

18.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.

19.若函数 是偶函数,则 ;若函数 是偶函数,则 .

20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.

21.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.

22.多项式函数 的奇偶性

多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.

多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.

23.函数 的图象的对称性

(1)函数 的图象关于直线 对称

.

(2)函数 的图象关于直线 对称

.

24.两个函数图象的对称性

(1)函数 与函数 的图象关于直线 (即 轴)对称.

(2)函数 与函数 的图象关于直线 对称.

(3)函数 和 的图象关于直线y=x对称.

25.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.

26.互为反函数的两个函数的关系

.

27.若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.

28.几个常见的函数方程

(1)正比例函数 , .

(2)指数函数 , .

(3)对数函数 , .

(4)幂函数 , .

(5)余弦函数 ,正弦函数 , ,

.

29.几个函数方程的周期(约定a>0)

(1) ,则 的周期T=a;

(2) ,

或 ,

或 ,

或 ,则 的周期T=2a;

(3) ,则 的周期T=3a;

(4) 且 ,则 的周期T=4a;

(5)

,则 的周期T=5a;

(6) ,则 的周期T=6a.

30.分数指数幂

(1) ( ,且 ).

(2) ( ,且 ).

31.根式的性质

(1) .

(2)当 为奇数时, ;

当 为偶数时, .

32.有理指数幂的运算性质

(1) .

(2) .

(3) .

注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.

33.指数式与对数式的互化式

.

34.对数的换底公式

( ,且 , ,且 , ).

推论 ( ,且 , ,且 , , ).

35.对数的四则运算法则

若a>0,a≠1,M>0,N>0,则

(1) ;

(2) ;

(3) .

36.设函数 ,记 .若 的定义域为 ,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要单独检验.

37. 对数换底不等式及其推广

若 , , , ,则函数

(1)当 时,在 和 上 为增函数.

, (2)当 时,在 和 上 为减函数.

推论:设 , , ,且 ,则

(1) .

(2) .

38. 平均增长率的问题

如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .

39.数列的同项公式与前n项的和的关系

( 数列 的前n项的和为 ).

40.等差数列的通项公式

其前n项和公式为

.

41.等比数列的通项公式

其前n项的和公式为

或 .

42.等比差数列 : 的通项公式为

其前n项和公式为

.

43.分期付款(按揭贷款)

每次还款 元(贷款 元, 次还清,每期利率为 ).

44.常见三角不等式

(1)若 ,则 .

(2) 若 ,则 .

(3) .

45.同角三角函数的基本关系式

, = , .

46.正弦、余弦的诱导公式

47.和角与差角公式

;

;

.

(平方正弦公式);

.

= (辅助角 所在象限由点 的象限决定, ).

48.二倍角公式

.

.

.

49. 三倍角公式

.

. .

50.三角函数的周期公式

函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .

51.正弦定理

.

52.余弦定理

;

;

.

53.面积定理

(1) ( 分别表示a、b、c边上的高).

(2) .

(3) .

54.三角形内角和定理

在△ABC中,有

.

55. 简单的三角方程的通解

.

.

.

特别地,有

.

.

.

56.最简单的三角不等式及其解集

.

.

.

.

.

.

57.实数与向量的积的运算律

设λ、μ为实数,那么

(1) 结合律:λ(μa)=(λμ)a;

(2)第一分配律:(λ+μ)a=λa+μa;

(3)第二分配律:λ(a+b)=λa+λb.

58.向量的数量积的运算律:

(1) a?b= b?a (交换律);

(2)( a)?b= (a?b)= a?b= a?( b);

(3)(a+b)?c= a ?c +b?c.

59.平面向量基本定理

如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.

不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.

60.向量平行的坐标表示

设a= ,b= ,且b 0,则a b(b 0) .

53. a与b的数量积(或内积)

a?b=|a||b|cosθ.

61. a?b的几何意义

数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.

62.平面向量的坐标运算

(1)设a= ,b= ,则a+b= .

(2)设a= ,b= ,则a-b= .

(3)设A ,B ,则 .

(4)设a= ,则 a= .

(5)设a= ,b= ,则a?b= .

63.两向量的夹角公式

(a= ,b= ).

64.平面两点间的距离公式

=

(A ,B ).

65.向量的平行与垂直

设a= ,b= ,且b 0,则

A||b b=λa .

a b(a 0) a?b=0 .

66.线段的定比分公式

设 , , 是线段 的分点, 是实数,且 ,则

( ).

67.三角形的重心坐标公式

△ABC三个顶点的坐标分别为 、 、 ,则△ABC的重心的坐标是 .

68.点的平移公式

.

注:图形F上的任意一点P(x,y)在平移后图形 上的对应点为 ,且 的坐标为 .

69.“按向量平移”的几个结论

(1)点 按向量a= 平移后得到点 .

(2) 函数 的图象 按向量a= 平移后得到图象 ,则 的函数解析式为 .

(3) 图象 按向量a= 平移后得到图象 ,若 的解析式 ,则 的函数解析式为 .

(4)曲线 : 按向量a= 平移后得到图象 ,则 的方程为 .

(5) 向量m= 按向量a= 平移后得到的向量仍然为m= .

70. 三角形五“心”向量形式的充要条件

设 为 所在平面上一点,角 所对边长分别为 ,则

(1) 为 的外心 .

(2) 为 的重心 .

(3) 为 的垂心 .

(4) 为 的内心 .

(5) 为 的 的旁心 .

71.常用不等式:

(1) (当且仅当a=b时取“=”号).

(2) (当且仅当a=b时取“=”号).

(3)

(4)柯西不等式

(5) .

72.极值定理

已知 都是正数,则有

(1)若积 是定值 ,则当 时和 有最小值 ;

(2)若和 是定值 ,则当 时积 有最大值 .

推广 已知 ,则有

(1)若积 是定值,则当 最大时, 最大;

当 最小时, 最小.

(2)若和 是定值,则当 最大时, 最小;

当 最小时, 最大.

73.一元二次不等式 ,如果 与 同号,则其解集在两根之外;如果 与 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.

.

74.含有绝对值的不等式

当a> 0时,有

.

或 .

75.无理不等式

(1) .

(2) .

(3) .

76.指数不等式与对数不等式

(1)当 时,

;

.

(2)当 时,

;

77.斜率公式

( 、 ).

78.直线的五种方程

(1)点斜式 (直线 过点 ,且斜率为 ).

(2)斜截式 (b为直线 在y轴上的截距).

(3)两点式 ( )( 、 ( )).

(4)截距式 ( 分别为直线的横、纵截距, )

(5)一般式 (其中A、B不同时为0).

79.两条直线的平行和垂直

(1)若 ,

① ;

② .

(2)若 , ,且A1、A2、B1、B2都不为零,

① ;

② ;

80.夹角公式

(1) .

( , , )

(2) .

( , , ).

直线 时,直线l1与l2的夹角是 .

81. 到 的角公式

(1) .

( , , )

(2) .

( , , ).

直线 时,直线l1到l2的角是 .

82.四种常用直线系方程

(1)定点直线系方程:经过定点 的直线系方程为 (除直线 ),其中 是待定的系数; 经过定点 的直线系方程为 ,其中 是待定的系数.

(2)共点直线系方程:经过两直线 , 的交点的直线系方程为 (除 ),其中λ是待定的系数.

(3)平行直线系方程:直线 中当斜率k一定而b变动时,表示平行直线系方程.与直线 平行的直线系方程是 ( ),λ是参变量.

(4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是 ,λ是参变量.

83.点到直线的距离

(点 ,直线 : ).

84. 或 所表示的平面区域

设直线 ,则 或 所表示的平面区域是:

若 ,当 与 同号时,表示直线 的上方的区域;当 与 异号时,表示直线 的下方的区域.简言之,同号在上,异号在下.

若 ,当 与 同号时,表示直线 的右方的区域;当 与 异号时,表示直线 的左方的区域. 简言之,同号在右,异号在左.

85. 或 所表示的平面区域

设曲线 ( ),则

或 所表示的平面区域是:

所表示的平面区域上下两部分;

所表示的平面区域上下两部分.

86. 圆的四种方程

(1)圆的标准方程 .

(2)圆的一般方程 ( >0).

(3)圆的参数方程 .

(4)圆的直径式方程 (圆的直径的端点是 、 ).

87. 圆系方程

(1)过点 , 的圆系方程是

,其中 是直线 的方程,λ是待定的系数.

(2)过直线 : 与圆 : 的交点的圆系方程是 ,λ是待定的系数.

(3) 过圆 : 与圆 : 的交点的圆系方程是 ,λ是待定的系数.

88.点与圆的位置关系

点 与圆 的位置关系有三种

若 ,则

点 在圆外; 点 在圆上; 点 在圆内.

89.直线与圆的位置关系

直线 与圆 的位置关系有三种:

;

;

.

其中 .

90.两圆位置关系的判定方法

设两圆圆心分别为O1,O2,半径分别为r1,r2,

;

;

;

;

.

91.圆的切线方程

(1)已知圆 .

①若已知切点 在圆上,则切线只有一条,其方程是

.

当 圆外时, 表示过两个切点的切点弦方程.

②过圆外一点的切线方程可设为 ,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.

③斜率为k的切线方程可设为 ,再利用相切条件求b,必有两条切线.

(2)已知圆 .

①过圆上的 点的切线方程为 ;

②斜率为 的圆的切线方程为 .

92.椭圆 的参数方程是 .

93.椭圆 焦半径公式

, .

94.椭圆的的内外部

(1)点 在椭圆 的内部 .

(2)点 在椭圆 的外部 .

95. 椭圆的切线方程

(1)椭圆 上一点 处的切线方程是 .

(2)过椭圆 外一点 所引两条切线的切点弦方程是

.

(3)椭圆 与直线 相切的条件是 .

96.双曲线 的焦半径公式

, .

97.双曲线的内外部

(1)点 在双曲线 的内部 .

(2)点 在双曲线 的外部 .

98.双曲线的方程与渐近线方程的关系

(1)若双曲线方程为 渐近线方程: .

(2)若渐近线方程为 双曲线可设为 .

(3)若双曲线与 有公共渐近线,可设为 ( ,焦点在x轴上, ,焦点在y轴上).

99. 双曲线的切线方程

(1)双曲线 上一点 处的切线方程是 .

(2)过双曲线 外一点 所引两条切线的切点弦方程是

.

(3)双曲线 与直线 相切的条件是 .

100. 抛物线 的焦半径公式

抛物线 焦半径 .

过焦点弦长 .

101.抛物线 上的动点可设为P 或 P ,其中 .

102.二次函数 的图象是抛物线:(1)顶点坐标为 ;(2)焦点的坐标为 ;(3)准线方程是 .

103.抛物线的内外部

(1)点 在抛物线 的内部 .

点 在抛物线 的外部 .

(2)点 在抛物线 的内部 .

点 在抛物线 的外部 .

(3)点 在抛物线 的内部 .

点 在抛物线 的外部 .

(4) 点 在抛物线 的内部 .

点 在抛物线 的外部 .

104. 抛物线的切线方程

(1)抛物线 上一点 处的切线方程是 .

(2)过抛物线 外一点 所引两条切线的切点弦方程是 .

(3)抛物线 与直线 相切的条件是 .

105.两个常见的曲线系方程

(1)过曲线 , 的交点的曲线系方程是

( 为参数).

(2)共焦点的有心圆锥曲线系方程 ,其中 .当 时,表示椭圆; 当 时,表示双曲线.

106.直线与圆锥曲线相交的弦长公式 或

(弦端点A ,由方程 消去y得到 , , 为直线 的倾斜角, 为直线的斜率).

107.圆锥曲线的两类对称问题

(1)曲线 关于点 成中心对称的曲线是 .

(2)曲线 关于直线 成轴对称的曲线是

.

108.“四线”一方程

对于一般的二次曲线 ,用 代 ,用 代 ,用 代 ,用 代 ,用 代 即得方程

,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.

109.证明直线与直线的平行的思考途径

(1)转化为判定共面二直线无交点;

(2)转化为二直线同与第三条直线平行;

(3)转化为线面平行;

(4)转化为线面垂直;

(5)转化为面面平行.

110.证明直线与平面的平行的思考途径

(1)转化为直线与平面无公共点;

(2)转化为线线平行;

(3)转化为面面平行.

111.证明平面与平面平行的思考途径

(1)转化为判定二平面无公共点;

(2)转化为线面平行;

(3)转化为线面垂直.

112.证明直线与直线的垂直的思考途径

(1)转化为相交垂直;

(2)转化为线面垂直;

(3)转化为线与另一线的射影垂直;

(4)转化为线与形成射影的斜线垂直.

113.证明直线与平面垂直的思考途径

(1)转化为该直线与平面内任一直线垂直;

(2)转化为该直线与平面内相交二直线垂直;

(3)转化为该直线与平面的一条垂线平行;

(4)转化为该直线垂直于另一个平行平面;

(5)转化为该直线与两个垂直平面的交线垂直.

114.证明平面与平面的垂直的思考途径

(1)转化为判断二面角是直二面角;

(2)转化为线面垂直.

115.空间向量的加法与数乘向量运算的运算律

(1)加法交换律:a+b=b+a.

(2)加法结合律:(a+b)+c=a+(b+c).

(3)数乘分配律:λ(a+b)=λa+λb.

116.平面向量加法的平行四边形法则向空间的推广

始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.

117.共线向量定理

对空间任意两个向量a、b(b≠0 ),a‖b 存在实数λ使a=λb.

三点共线 .

、 共线且 不共线 且 不共线.

118.共面向量定理

向量p与两个不共线的向量a、b共面的 存在实数对 ,使 .

推论 空间一点P位于平面MAB内的 存在有序实数对 ,使 ,

或对空间任一定点O,有序实数对 ,使 .

119.对空间任一点 和不共线的三点A、B、C,满足 ( ),则当 时,对于空间任一点 ,总有P、A、B、C四点共面;当 时,若 平面ABC,则P、A、B、C四点共面;若 平面ABC,则P、A、B、C四点不共面.

四点共面 与 、 共面

( 平面ABC).

120.空间向量基本定理

如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc.

推论 设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使 .

121.射影公式

已知向量 =a和轴 ,e是 上与 同方向的单位向量.作A点在 上的射影 ,作B点在 上的射影 ,则

〈a,e〉=a?e

122.向量的直角坐标运算

设a= ,b= 则

(1)a+b= ;

(2)a-b= ;

(3)λa= (λ∈R);

(4)a?b= ;

123.设A ,B ,则

= .

124.空间的线线平行或垂直

设 , ,则

.

125.夹角公式

设a= ,b= ,则

cos〈a,b〉= .

推论 ,此即三维柯西不等式.

126. 四面体的对棱所成的角

四面体 中, 与 所成的角为 ,则

.

127.异面直线所成角

=

(2) ; ;

(3) ;

(4) ;

(5) ( 为弧度);

(6) ( 为弧度);

(7) ( 为弧度)

196.判别 是极大(小)值的方法

当函数 在点 处连续时,

(1)如果在 附近的左侧 ,右侧 ,则 是极大值;

(2)如果在 附近的左侧 ,右侧 ,则 是极小值.

197.复数的相等

.( )

198.复数 的模(或绝对值)

= = .

199.复数的四则运算法则

(1) ;

(2) ;

(3) ;

(4) .

200.复数的乘法的运算律

对于任何 ,有

交换律: .

结合律: .

分配律: .

201.复平面上的两点间的距离公式

( , ).

202.向量的垂直

非零复数 , 对应的向量分别是 , ,则

的实部为零 为纯虚数

(λ为非零实数).

203.实系数一元二次方程的解

实系数一元二次方程 ,

①若 ,则 ;

②若 ,则 ;

③若 ,它在实数集 内没有实数根;在复数集 内有且仅有两个共轭复数根 .

2017年高考数学平面向量必考知识点

一、选择题

1.平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,点D在直线3x-y+1=0上移动,则点B的轨迹方程为(  )

A.3x-y-20=0 B.3x-y+10=0

C.3x-y-9=0 D.3x-y-12=0

答案:A 解题思路:设AC的中点为O,即.设B(x,y)关于点O的对称点为(x0,y0),即D(x0,y0),则由3x0-y0+1=0,得3x-y-20=0.

2.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为(  )

A.1 B.2

C. -2D.3

答案:C 解题思路:当该点是过圆心向直线引的垂线的交点时,切线长最小.因圆心(3,0)到直线的距离为d==2,所以切线长的最小值是l==.

3.直线y=x+b与曲线x=有且只有一个交点,则b的取值范围是(  )

A.{b||b|=}

B.{b|-1

C.{b|-1≤b<1}

D.非以上答案

答案:

B 解题思路:在同一坐标系中,画出y=x+b与曲线x=(就是x2+y2=1,x≥0)的图象,如图所示,相切时b=-,其他位置符合条件时需-1

4.若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆所作的切线长的最小值是(  )

A.2 B.3

C.4 D.6

答案:C 解题思路:圆的标准方程为(x+1)2+(y-2)2=2,所以圆心为(-1,2),半径为.因为圆关于直线2ax+by+6=0对称,所以圆心在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离为

d==

==.

所以当a=2时,d有最小值=3,此时切线长最小,为==4,故选C.

5.已知动点P到两定点A,B的距离和为8,且|AB|=4,线段AB的中点为O,过点O的所有直线与点P的轨迹相交而形成的线段中,长度为整数的有(  )

A.5条 B.6条

C.7条 D.8条

答案:D 命题立意:本题考查椭圆的定义与性质,难度中等.

解题思路:依题意,动点P的轨迹是以A,B为焦点,长轴长是8,短轴长是2=4的椭圆.注意到经过该椭圆的中心O的最短弦长等于4,最长弦长是8,因此过点O的所有直线与点P的轨迹相交而形成的线段中,长度可以为整数4,5,6,7,8,其中长度为4,8的各一条,长度为5,6,7的各有两条,因此满足题意的弦共有8条,故选D.

6.设m,nR,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是(  )

A.[1-,1+]

B.(-∞,1-][1+,+∞)

C.[2-2,2+2]

D.(-∞,2-2][2+2,+∞)

答案:D 解题思路: 直线与圆相切,

=1,

|m+n|=,

即mn=m+n+1,

设m+n=t,则mn≤2=,

t+1≤, t2-4t-4≥0,

解得:t≤2-2或t≥2+2.

7.在平面直角坐标系xOy中,设A,B,C是圆x2+y2=1上相异三点,若存在正实数λ,μ,使得=λ+μ,则λ2+(μ-3)2的取值范围是(  )

A.[0,+∞) B.(2,+∞)

C.(2,8) D.(8,+∞)

答案:B 解题思路:依题意B,O,C三点不可能在同一直线上, ·=|cos BOC=cos BOC∈(-1,1),又由=λ+μ,得λ=-μ,于是λ2=1+μ2-2μ·,记f(μ)=λ2+(μ-3)2.则f(μ)=1+μ2-2μ·+(μ-3)2=2μ2-6μ-2μ·+10,可知f(μ)>2μ2-8μ+10=2(μ-2)2+2≥2,且f(μ)<2μ2-4μ+10=2(μ-1)2+8无值,故λ2+(μ-3)2的取值范围为(2,+∞).

8.已知圆C:x2+y2=1,点P(x0,y0)在直线x-y-2=0上,O为坐标原点,若圆C上存在一点Q,使得OPQ=30°,则x0的取值范围是(  )

A.[-1,1] B.[0,1]

C.[-2,2] D.[0,2]

答案:D 解析:由题知,在OPQ中,=,即=, |OP|≤2,又P(x0,x0-2),则x+(x0-2)2≤4,解得x0[0,2],故选D.

9.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分成两部分,使得这两部分的面积之差,则该直线的方程为(  )

A.x+y-2=0 B.y-1=0

C.x-y=0 D.x+3y-4=0

答案:A 命题立意:本题考查直线、线性规划与圆的综合运用及数形结合思想,难度中等.

解题思路:要使直线将圆形区域分成两部分的面积之差,必须使过点P的圆的弦长达到最小,所以需该直线与直线OP垂直.又已知点P(1,1),则kOP=1,故所求直线的斜率为-1.又所求直线过点P(1,1),故由点斜式得,所求直线的方程为y-1=-(x-1),即x+y-2=0.

10.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是(  )

A. B.

C.[-, ] D.

答案:B 命题立意:本题考查直线与圆的位置关系,难度中等.

解题思路:在由弦心距d、半径r和半弦长|MN|构成的直角三角形中,由勾股定理,得|MN|=≥,得4-d2≥3,解得d2≤1,又d==,解得k2≤,所以-≤k≤.

二、填空题

11.已知直线l:y=-(x-1)与圆O:x2+y2=1在第一象限内交于点M,且l与y轴交于点A,则MOA的面积等于________.

答案: 命题立意:本题考查直线与圆的位置关系的应用,难度较小.

解题思路:联立直线与圆的方程可得xM=,故SMOA=×|OA|×xM=××=.

12.在ABC中,角A,B,C的对边分别为a,b,c.若a2+b2=c2,则直线ax-by+c=0被圆x2+y2=9所截得的弦长为________.

答案:2 命题立意:本题考查直线与圆位置关系的应用,求解弦长一般采用几何法求解,难度较小.

解题思路:圆心到直线的距离d===,故直线被圆截得的弦长为2=2=2.

13.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足APO=BPO,其中O为原点,则点P的轨迹方程是________.

答案:(x-2)2+y2=4(y≠0) 命题立意:本题考查角平分线的性质及直接法求轨迹方程,难度中等.

解题思路:因为A(-2,0),B(1,0)两点,动点P不在x轴上,且满足APO=BPO,故点P在角APB的角平分线上,则利用PAPB=AOOB=21,设点P(x,y),则利用关系式可知=2化简可得(x-2)2+y2=4(y≠0).

14.若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2,则m的倾斜角可以是

15° 30° 45° 60° 75°

其中正确答案的序号是________.(写出所有正确答案的序号)

答案: 解题思路:设直线m与l1,l2分别交于A,B两点,

过A作ACl2于C,则|AC|==.

又|AB|=2,ABC=30°.

又直线l1的倾斜角为45°,

直线m的倾斜角为45°+30°=75°或45°-30°=15°.

B组

一、选择题

1.已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos AFB=(  )

A. B.

C.- D.-

答案:D 解题思路:联立消去y得x2-5x+4=0,解得x=1或x=4.

不妨设点A在x轴下方,所以A(1,-2),B(4,4).

因为F(1,0),所以=(0,-2),=(3,4).

因此cos AFB=

==-.故选D.

2.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为(  )

A. B.

C.1 D.2

答案:D 解题思路:由题意知,抛物线的准线l为y=-1,过A作AA1l于A1,过B作BB1l于B1,设弦AB的中点为M,过M作MM1l于M1,则|MM1|=,|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,即|AA1|+|BB1|≥6,即2|MM1|≥6, |MM1|≥3,即M到x轴的距离d≥2,故选D.

3.设双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,A是双曲线渐近线上的一点,AF2F1F2,原点O到直线AF1的距离为|OF1|,则渐近线的斜率为(  )

A.或- B.或-

C.1或-1 D.或-

答案:D 命题立意:本题考查了双曲线的几何性质的探究,体现了解析几何的数学思想方法的巧妙应用,难度中等.

解题思路:如图如示,不妨设点A是第一象限内双曲线渐近线y=x上的一点,由AF2F1F2,可得点A的坐标为,又由OBAF1且|OB|=|OF1|,即得sin OF1B=,则tan OF1B=,即可得=, =,得=,由此可得该双曲线渐近线的斜率为或-,故应选D.

4.设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,与直线y=b相切的F2交椭圆于点E,E恰好是直线EF1与F2的切点,则椭圆的离心率为(  )

A. B.

C. D.

答案:C 解题思路:由题意可得,EF1F2为直角三角形,且F1EF2=90°,

|F1F2|=2c,|EF2|=b,

由椭圆的定义知|EF1|=2a-b,

又|EF1|2+|EF2|2=|F1F2|2,

即(2a-b)2+b2=(2c)2,整理得b=a,

所以e2===,故e=,故选C.

5.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为(  )

A. B.2 C.4 D.8

答案:C 解题思路:由题意得,设等轴双曲线的方程为-=1,又抛物线y2=16x的准线方程为x=-4,代入双曲线的方程得y2=16-a2y=±,所以2=4,解得a=2,所以双曲线的实轴长为2a=4,故选C.

6.抛物线y2=-12x的准线与双曲线-=1的两条渐近线围成的三角形的面积等于(  )

A. B.3 C. D.3

答案:B 命题立意:本题主要考查抛物线与双曲线的性质等基础知识,意在考查考生的运算能力.

解题思路:依题意得,抛物线y2=-12x的准线方程是x=3,双曲线-=1的渐近线方程是y=±x,直线x=3与直线y=±x的交点坐标是(3,±),因此所求的三角形的面积等于×2×3=3,故选B.

7.若双曲线-=1与椭圆+=1(m>b>0)的离心率之积大于1,则以a,b,m为边长的三角形一定是(  )

A.等腰三角形 B.直角三角形

C.锐角三角形 D.钝角三角形

答案:D 解题思路:双曲线的离心率为e1=,椭圆的离心率e2=,由题意可知e1·e2>1,即b2(m2-a2-b2)>0,所以m2-a2-b2>0,即m2>a2+b2,由余弦定理可知三角形为钝角三角形,故选D.

8. F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A,B两点.若ABF2是等边三角形,则该双曲线的离心率为(  )

A.2 B. C. D.

答案:B 命题立意:本题主要考查了双曲线的定义、标准方程、几何性质以及基本量的计算等基础知识,考查了考生的推理论证能力以及运算求解能力.

解题思路:如图,由双曲线定义得,|BF1|-|BF2|=|AF2|-|AF1|=2a,因为ABF2是正三角形,所以|BF2|=|AF2|=|AB|,因此|AF1|=2a,|AF2|=4a,且F1AF2=120°,在F1AF2中,4c2=4a2+16a2+2×2a×4a×=28a2,所以e=,故选B.

9.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )

A.2 B.3

C. D.

答案:A 解题思路:设抛物线y2=4x上一动点P到直线l1和直线l2的距离分别为d1,d2,根据抛物线的定义可知直线l2:x=-1恰为抛物线的准线,抛物线的焦点为F(1,0),则d2=|PF|,由数形结合可知d1+d2=d1+|PF|取得最小值时,即为点F到l1的距离,利用点到直线的距离公式得最小值为=2,故选A.

10.已知双曲线-=1(a>0,b>0),A,B是双曲线的两个顶点,P是双曲线上的一点,且与点B在双曲线的同一支上,P关于y轴的对称点是Q.若直线AP,BQ的斜率分别是k1,k2,且k1·k2=-,则双曲线的离心率是(  )

A. B. C. D.

答案:C 命题立意:本题考查双曲线方程及其离心率的求解,考查化简及变形能力,难度中等.

解题思路:设A(0,-a),B(0,a),P(x1,y1),Q(-x1,y1),故k1k2=×=,由于点P在双曲线上,故有-=1,即x=b2=,故k1k2==-=-,故有e===,故选C.

二、填空题

11.已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点,则(1)y1y2=________;(2)三角形ABF面积的最小值是________.

答案:(1)-8 (2)2 命题立意:本题主要考查直线与抛物线的位置关系,难度中等.

解题思路:设直线AB的方程为x-2=m(y-0),即x=my+2,联立得y2-4my-8=0.(1)由根与系数的关系知y1y2=-8.(2)三角形ABF的面积为S=|FP||y1-y2|=×1×=≥2.

知识拓展:将ABF分割后进行求解,能有效减少计算量.

12. B1,B2是椭圆短轴的两端点,O为椭圆中心,过左焦点F1作长轴的垂线交椭圆于P,若|F1B2|是|OF1|和|B1B2|的等比中项,则的值是________.

答案: 命题立意:本题考查椭圆的基本性质及等比中项的性质,难度中等.

解题思路:设椭圆方程为+=1(a>b>0),令x=-c,得y2=, |PF1|=. ==,又由|F1B2|2=|OF1|·|B1B2|,得a2=2bc. a4=4b2(a2-b2), (a2-2b2)2=0, a2=2b2, =.

13.已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B.若=,则p=________.

答案:2 解题思路:过B作BE垂直于准线l于E,

=, M为AB的中点,

|BM|=|AB|,又斜率为,

BAE=30°, |BE|=|AB|,

|BM|=|BE|, M为抛物线的焦点,

p=2.

14.

如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若B1PA2为钝角,则此椭圆的离心率的取值范围为________.

答案: 解题思路:设椭圆的方程为+=1(a>b>0),B1PA2为钝角可转化为,所夹的角为钝角,则(a,-b)·(-c,-b)0, e>或e<,又0

15.在平面直角坐标系xOy中,已知双曲线C:-=1.设过点M(0,1)的直线l与双曲线C交于A,B两点,若=2,则直线l的斜率为________.

答案:± 命题立意:本题考查直线与双曲线的位置关系,难度中等.

解题思路:联立直线与双曲线,结合根与系数的关系及向量的坐标运算求解.由题意可知,直线l与双曲线的两支相交,故设直线l:y=kx+1,k,代入双曲线方程整理得(3-4k2)x2-8kx-16=0(*).设A(x1,y1),B(x2,y2),则由=2得x1=-2x2,在(*)中,利用根与系数的关系得x1+x2=,解得x2=-,y2=,代入双曲线方程整理得16k4-16k2+3=0,解得k2=,故直线l的斜率是±.

2017年数学高考卷子的六道大题

 平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。以下是我为您整理的关于2017年高考数学平面向量必考知识点的相关资料,希望对您有所帮助。

 高考数学必考知识点平面向量概念:

 (1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。

 (2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。

 (3)单位向量:模为1个单位长度的向量

 (4)平行向量:方向相同或相反的非零向量

 (5)相等向量:长度相等且方向相同的向量

 高考数学必考知识点平面向量数量积解析

 1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cos?(?是a与b的夹角)叫做a与b的数量积或内积,记作a?b。零向量与任意向量的数量积为0。数量积a?b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos?的乘积。

 两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a?b=x1?x2+y1?y2

 2、平面向量数量积具有以下性质:

 1、a?a=|a|2?0

 2、a?b=b?a

 3、k(a?b)=(ka)b=a(kb)

 4、a?(b+c)=a?b+a?c

 5、a?b=0<=>a?b

 6、a=kb<=>a//b

 7、e1?e2=|e1||e2|cos?

 高考数学必考知识点平面向量加法解析

 已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

 注:向量的加法满足所有的加法运算定律,如:交换律、结合律。

 高考数学必考知识点平面向量减法解析

 1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。

 -(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。

 平面向量公式汇总

 1、定比分点

 定比分点公式(向量P1P=?向量PP2)

 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 ?,使 向量P1P=?向量PP2,?叫做点P分有向线段P1P2所成的比。

 若P1(x1,y1),P2(x2,y2),P(x,y),则有

 OP=(OP1+?OP2)(1+?);(定比分点向量公式)

 x=(x1+?x2)/(1+?),

 y=(y1+?y2)/(1+?)。(定比分点坐标公式)

 我们把上面的式子叫做有向线段P1P2的定比分点公式

 2、三点共线定理

 若OC=?OA +?OB ,且?+?=1 ,则A、B、C三点共线

 三角形重心判断式

 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

 [编辑本段]向量共线的重要条件

 若b?0,则a//b的重要条件是存在唯一实数?,使a=?b。

 a//b的重要条件是 xy'-x'y=0。

 零向量0平行于任何向量。

 [编辑本段]向量垂直的充要条件

 a?b的充要条件是 a?b=0。

 a?b的充要条件是 xx'+yy'=0。

 零向量0垂直于任何向量.

 设a=(x,y),b=(x',y')。

 3、向量的加法

 向量的加法满足平行四边形法则和三角形法则。

 AB+BC=AC。

 a+b=(x+x',y+y')。

 a+0=0+a=a。

 向量加法的运算律:

 交换律:a+b=b+a;

 结合律:(a+b)+c=a+(b+c)。

 4、向量的减法

 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

 AB-AC=CB. 即?共同起点,指向被减?

 a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

 5、数乘向量

 实数?和向量a的乘积是一个向量,记作?a,且∣?a∣=∣?∣?∣a∣。

 当?>0时,?a与a同方向;

 当?<0时,?a与a反方向;

 当?=0时,?a=0,方向任意。

 当a=0时,对于任意实数?,都有?a=0。

 注:按定义知,如果?a=0,那么?=0或a=0。

 实数?叫做向量a的系数,乘数向量?a的几何意义就是将表示向量a的有向线段伸长或压缩。

 当∣?∣>1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上伸长为原来的∣?∣倍;

 当∣?∣<1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上缩短为原来的∣?∣倍。

 数与向量的乘法满足下面的运算律

 结合律:(?a)?b=?(a?b)=(a?b)。

 向量对于数的分配律(第一分配律):(?+?)a=?a+?a.

 数对于向量的分配律(第二分配律):?(a+b)=?a+?b.

 数乘向量的消去律:① 如果实数?0且?a=?b,那么a=b。② 如果a?0且?a=?a,那么?=?。

 6、向量的的数量积

 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0?〈a,b〉?

 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

 向量的数量积的坐标表示:a?b=x?x'+y?y'。

 向量的数量积的运算律

 a?b=b?a(交换律);

 (?a)?b=?(a?b)(关于数乘法的结合律);

 (a+b)?c=a?c+b?c(分配律);

 向量的数量积的性质

 a?a=|a|的平方。

 a?b 〈=〉a?b=0。

 |a?b|?|a|?|b|。

 7、向量的数量积与实数运算的主要不同点

 (1)向量的数量积不满足结合律,即:(a?b)?c?a?(b?c);例如:(a?b)^2?a^2?b^2。

 (2)向量的数量积不满足消去律,即:由 a?b=a?c (a?0),推不出 b=c。

 (3)|a?b|?|a|?|b|

 (4)由 |a|=|b| ,推不出 a=b或a=-b。

 8、向量的向量积

 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a?b。若a、b不共线,则a?b的模是:∣a?b∣=|a|?|b|?sin〈a,b〉;a?b的方向是:垂直于a和b,且a、b和a?b按这个次序构成右手系。若a、b共线,则a?b=0。

 (1)向量的向量积性质:

 ∣a?b∣是以a和b为边的平行四边形面积。

 a?a=0。

 a‖b〈=〉a?b=0。

 (2)向量的向量积运算律

 a?b=-b?a;

 (?a)?b=?(a?b)=a?(?b);

 (a+b)?c=a?c+b?c.

 注:向量没有除法,?向量AB/向量CD?是没有意义的。

 (3)向量的三角形不等式

 ∣∣a∣-∣b∣∣?∣a+b∣?∣a∣+∣b∣;

 ① 当且仅当a、b反向时,左边取等号;

 ② 当且仅当a、b同向时,右边取等号。

 ∣∣a∣-∣b∣∣?∣a-b∣?∣a∣+∣b∣。

 ① 当且仅当a、b同向时,左边取等号;

17年高考数学是怎么了

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.

20.(12分)

已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae?^x+(a﹣2)e^x﹣x.

(1)?讨论的单调性;

(2)?若有两个零点,求a的取值范围.

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4,坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.

(1)若a=-1,求C与l的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

23.[选修4—5:不等式选讲](10分)

已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.

(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.

2022年河南高考数学(理科)参考答案及数学真题汇总(已更新)

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。

体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。

高考数学必考知识点归纳如下

1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

2、概率和统计,这部分和生活联系比较大,属应用题。

3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

2022年全国高考将在2022年的6月7日举行,而河南高考的数学考试将在6月7日的下午举行,同学们结束了数学考试,应该都很想知道数学的参考答案及数学真题。等到数学考试结束,我将第一时间为大家整理出河南高考数学参考答案及数学真题汇总。

同学们如果想要知道自己的考试成绩可以上哪些大学,可以在下方 "输入分数,查看可以上的大学"。

一.2022年河南高考数学(理科)真题

二.2022年河南高考数学(理科)参考答案汇总

文章标签: # 直线 # 向量 # 方程